Understanding Interaction Models: Improving Empirical Analyses

Multiplicative interaction models are common in the quantitative political science literature. This is so for good reason. Institutional arguments frequently imply that the relationship between political inputs and outcomes varies depending on the institutional context. Models of strategic interacti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Political analysis 2006-01, Vol.14 (1), p.63-82
Hauptverfasser: Brambor, Thomas, Clark, William Roberts, Golder, Matt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multiplicative interaction models are common in the quantitative political science literature. This is so for good reason. Institutional arguments frequently imply that the relationship between political inputs and outcomes varies depending on the institutional context. Models of strategic interaction typically produce conditional hypotheses as well. Although conditional hypotheses are ubiquitous in political science and multiplicative interaction models have been found to capture their intuition quite well, a survey of the top three political science journals from 1998 to 2002 suggests that the execution of these models is often flawed and inferential errors are common. We believe that considerable progress in our understanding of the political world can occur if scholars follow the simple checklist of dos and don'ts for using multiplicative interaction models presented in this article. Only 10% of the articles in our survey followed the checklist.
ISSN:1047-1987
1476-4989
DOI:10.1093/pan/mpi014