Unfolding Incomplete Data: Guidelines for Unfolding Row-Conditional Rank Order Data with Random Missings

Unfolding creates configurations from preference information. In this paper, it is argued that not all preference information needs to be collected and that good solutions are still obtained, even when more than half of the data is missing. Simulation studies are conducted to compare missing data tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of classification 2009-12, Vol.26 (3), p.329-360
Hauptverfasser: Busing, Frank M. T. A., de Rooij, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Unfolding creates configurations from preference information. In this paper, it is argued that not all preference information needs to be collected and that good solutions are still obtained, even when more than half of the data is missing. Simulation studies are conducted to compare missing data treatments, sources of missing data, and designs for the specification of missing data. Guidelines are provided and used in actual practice.
ISSN:0176-4268
1432-1343
DOI:10.1007/s00357-009-9039-7