Ontology based text indexing and querying for the semantic web
This publication shows how the gap between the HTML based internet and the RDF based vision of the semantic web might be bridged, by linking words in texts to concepts of ontologies. Most current search engines use indexes that are built at the syntactical level and return hits based on simple strin...
Gespeichert in:
Veröffentlicht in: | Knowledge-based systems 2006-12, Vol.19 (8), p.744-754 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This publication shows how the gap between the HTML based internet and the RDF based vision of the semantic web might be bridged, by linking words in texts to concepts of ontologies. Most current search engines use indexes that are built at the syntactical level and return hits based on simple string comparisons. However, the indexes do not contain synonyms, cannot differentiate between homonyms (‘mouse’ as a pointing vs. ‘mouse’ as an animal) and users receive different search results when they use different conjugation forms of the same word. In this publication, we present a system that uses ontologies and Natural Language Processing techniques to index texts, and thus supports word sense disambiguation and the retrieval of texts that contain equivalent words, by indexing them to concepts of ontologies.
For this purpose, we developed fully automated methods for mapping equivalent concepts of imported RDF ontologies (for this prototype WordNet, SUMO and OpenCyc). These methods will thus allow the seamless integration of domain specific ontologies for concept based information retrieval in different domains.
To demonstrate the practical workability of this approach, a set of web pages that contain synonyms and homonyms were indexed and can be queried via a search engine like query frontend. However, the ontology based indexing approach can also be used for other data mining applications such text clustering, relation mining and for searching free text fields in biological databases. The ontology alignment methods and some of the text mining principles described in this publication are now incorporated into the ONDEX system
http://ondex.sourceforge.net/. |
---|---|
ISSN: | 0950-7051 1872-7409 |
DOI: | 10.1016/j.knosys.2006.04.015 |