Partition-based logical reasoning for first-order and propositional theories
In this paper we show how tree decomposition can be applied to reasoning with first-order and propositional logic theories. Our motivation is two-fold. First, we are concerned with how to reason effectively with multiple knowledge bases that have overlap in content. Second, we are concerned with imp...
Gespeichert in:
Veröffentlicht in: | Artificial intelligence 2005-02, Vol.162 (1), p.49-88 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we show how tree decomposition can be applied to reasoning with first-order and propositional logic theories. Our motivation is two-fold. First, we are concerned with how to reason effectively with multiple knowledge bases that have overlap in content. Second, we are concerned with improving the efficiency of reasoning over a set of logical axioms by partitioning the set with respect to some detectable structure, and reasoning over individual partitions either locally or in a distributed fashion. To this end, we provide algorithms for partitioning and reasoning with related logical axioms in propositional and first-order logic.
Many of the reasoning algorithms we present are based on the idea of passing messages between partitions. We present algorithms for both forward (data-driven) and backward (query-driven) message passing. Different partitions may have different associated reasoning procedures. We characterize a class of reasoning procedures that ensures completeness and soundness of our message-passing algorithms. We further provide a specialized algorithm for propositional satisfiability checking with partitions. Craig's interpolation theorem serves as a key to proving soundness and completeness of all of these algorithms. An analysis of these algorithms emphasizes parameters of the partitionings that influence the efficiency of computation. We provide a greedy algorithm that automatically decomposes a set of logical axioms into partitions, following this analysis. |
---|---|
ISSN: | 0004-3702 1872-7921 |
DOI: | 10.1016/j.artint.2004.11.004 |