A Survey of Outlier Detection Methodologies

Outlier detection has been used for centuries to detect and, where appropriate, remove anomalous observations from data. Outliers arise due to mechanical faults, changes in system behaviour, fraudulent behaviour, human error, instrument error or simply through natural deviations in populations. Thei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Artificial intelligence review 2004-10, Vol.22 (2), p.85-126
Hauptverfasser: Hodge, Victoria, Austin, Jim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Outlier detection has been used for centuries to detect and, where appropriate, remove anomalous observations from data. Outliers arise due to mechanical faults, changes in system behaviour, fraudulent behaviour, human error, instrument error or simply through natural deviations in populations. Their detection can identify system faults and fraud before they escalate with potentially catastrophic consequences. It can identify errors and remove their contaminating effect on the data set and as such to purify the data for processing. The original outlier detection methods were arbitrary but now, principled and systematic techniques are used, drawn from the full gamut of Computer Science and Statistics. In this paper, we introduce a survey of contemporary techniques for outlier detection. We identify their respective motivations and distinguish their advantages and disadvantages in a comparative review.
ISSN:0269-2821
1573-7462
DOI:10.1023/B:AIRE.0000045502.10941.a9