Multi-modal diagnosis combining case-based and model-based reasoning: a formal and experimental analysis

Integrating different reasoning modes in the construction of an intelligent system is one of the most interesting and challenging aspects of modern AI. Exploiting the complementarity and the synergy of different approaches is one of the main motivations that led several researchers to investigate th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence 2004-10, Vol.158 (2), p.109-153
Hauptverfasser: Portinale, Luigi, Magro, Diego, Torasso, Pietro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Integrating different reasoning modes in the construction of an intelligent system is one of the most interesting and challenging aspects of modern AI. Exploiting the complementarity and the synergy of different approaches is one of the main motivations that led several researchers to investigate the possibilities of building multi-modal reasoning systems, where different reasoning modalities and different knowledge representation formalisms are integrated and combined. Case-Based Reasoning (CBR) is often considered a fundamental modality in several multi-modal reasoning systems; CBR integration has been shown very useful and practical in several domains and tasks. The right way of devising a CBR integration is however very complex and a principled way of combining different modalities is needed to gain the maximum effectiveness and efficiency for a particular task. In this paper we present results (both theoretical and experimental) concerning architectures integrating CBR and Model-Based Reasoning (MBR) in the context of diagnostic problem solving. We first show that both the MBR and CBR approaches to diagnosis may suffer from computational intractability, and therefore a careful combination of the two approaches may be useful to reduce the computational cost in the average case. The most important contribution of the paper is the analysis of the different facets that may influence the entire performance of a multi-modal reasoning system, namely computational complexity, system competence in problem solving and the quality of the sets of produced solutions. We show that an opportunistic and flexible architecture able to estimate the right cooperation among modalities can exhibit a satisfactory behavior with respect to every performance aspect. An analysis of different ways of integrating CBR is performed both at the experimental and at the analytical level. On the analytical side, a cost model and a competence model able to analyze a multi-modal architecture through the analysis of its individual components are introduced and discussed. On the experimental side, a very detailed set of experiments has been carried out, showing that a flexible and opportunistic integration can provide significant advantages in the use of a multi-modal architecture.
ISSN:0004-3702
1872-7921
DOI:10.1016/j.artint.2004.05.005