Theory revision with queries: Horn, read-once, and parity formulas

A theory, in this context, is a Boolean formula; it is used to classify instances, or truth assignments. Theories can model real-world phenomena, and can do so more or less correctly. The theory revision, or concept revision, problem is to correct a given, roughly correct concept. This problem is co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence 2004-07, Vol.156 (2), p.139-176
Hauptverfasser: Goldsmith, Judy, Sloan, Robert H., Szörényi, Balázs, Turán, György
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A theory, in this context, is a Boolean formula; it is used to classify instances, or truth assignments. Theories can model real-world phenomena, and can do so more or less correctly. The theory revision, or concept revision, problem is to correct a given, roughly correct concept. This problem is considered here in the model of learning with equivalence and membership queries. A revision algorithm is considered efficient if the number of queries it makes is polynomial in the revision distance between the initial theory and the target theory, and polylogarithmic in the number of variables and the size of the initial theory. The revision distance is the minimal number of syntactic revision operations, such as the deletion or addition of literals, needed to obtain the target theory from the initial theory. Efficient revision algorithms are given for Horn formulas and read-once formulas, where revision operators are restricted to deletions of variables or clauses, and for parity formulas, where revision operators include both deletions and additions of variables. We also show that the query complexity of the read-once revision algorithm is near-optimal.
ISSN:0004-3702
1872-7921
DOI:10.1016/j.artint.2004.01.002