A statistical approach to predictive detection

Service providers typically define quality of service problems using threshold tests, such as “Are HTTP operations greater than 12 per second on server XYZ?” Herein, we estimate the probability of threshold violations for specific times in the future. We model the threshold metric (e.g., HTTP operat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2001, Vol.35 (1), p.77-95
Hauptverfasser: Hellerstein, Joseph L., Zhang, Fan, Shahabuddin, Perwez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Service providers typically define quality of service problems using threshold tests, such as “Are HTTP operations greater than 12 per second on server XYZ?” Herein, we estimate the probability of threshold violations for specific times in the future. We model the threshold metric (e.g., HTTP operations per second) at two levels: (1) non-stationary behavior (as is done in workload forecasting for capacity planning) and (2) stationary, time-serial dependencies. Our approach is assessed using simulation experiments and measurements of a production Web server. For both assessments, the probabilities of threshold violations produced by our approach lie well within two standard deviations of the measured fraction of threshold violations.
ISSN:1389-1286
1872-7069
DOI:10.1016/S1389-1286(00)00151-1