Pruning boosted classifiers with a real valued genetic algorithm
Ensemble classifiers and algorithms for learning ensembles have recently received a great deal of attention in the machine learning literature (R.E. Schapire, Machine Learning 5(2) (1990) 197–227;N. Cesa-Bianchi, Y. Freund, D. Haussler, D.P. Helbold, R.E. Schapire, M.K. Warmuth, Proceedings of the 2...
Gespeichert in:
Veröffentlicht in: | Knowledge-based systems 1999-10, Vol.12 (5), p.277-284 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ensemble classifiers and algorithms for learning ensembles have recently received a great deal of attention in the machine learning literature (R.E. Schapire, Machine Learning 5(2) (1990) 197–227;N. Cesa-Bianchi, Y. Freund, D. Haussler, D.P. Helbold, R.E. Schapire, M.K. Warmuth, Proceedings of the 25th Annual ACM Symposium on the Theory of Computing, 1993, pp. 382–391; L. Breiman, Bias, Technical Report 460, Statistics Department, University of California, Berkeley, CA, 1996; J.R. Quinlan, Proceedings of the 14th International Conference on Machine Learning, Italy, 1997; Y. Freund, R.E. Schapire, Proceedings of the 13th International Conference on Machine Learning ICML96, Bari, Italy 1996, pp. 148–157; A.J.C. Sharkey, N.E. Sharkey, Combining diverse neural nets, The Knowledge Engineering Review 12 (3) (1997) 231–247). In particular, boosting has received a great deal of attention as a mechanism by which an ensemble of classifiers that has a better generalisation characteristic than any single classifier derived using a particular technique can be discovered. In this article, we examine and compare a number of techniques for pruning a classifier ensemble which is overfit on its training set and find that a real valued GA is at least as good as the best heuristic search algorithm for choosing an ensemble weighting. |
---|---|
ISSN: | 0950-7051 1872-7409 |
DOI: | 10.1016/S0950-7051(99)00023-4 |