On the complexity of choosing the branching literal in DPLL

The DPLL (Davis–Putnam–Logemann–Loveland) algorithm is one of the best-known algorithms for solving the problem of satisfiability of propositional formulas. Its efficiency is affected by the way literals to branch on are chosen. In this paper we analyze the complexity of the problem of choosing an o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence 2000, Vol.116 (1), p.315-326
1. Verfasser: Liberatore, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The DPLL (Davis–Putnam–Logemann–Loveland) algorithm is one of the best-known algorithms for solving the problem of satisfiability of propositional formulas. Its efficiency is affected by the way literals to branch on are chosen. In this paper we analyze the complexity of the problem of choosing an optimal literal. Namely, we prove that this problem is both NP-hard and coNP-hard, and is in PSPACE. We also study its approximability.
ISSN:0004-3702
1872-7921
DOI:10.1016/S0004-3702(99)00097-1