Importance of information pre-processing in the improvement of neural network results

: This paper compares the success ratio of certain topologies when their input data are changed through different pre‐processing methods. It begins with the database description, and it shows some different kinds of pre‐processing that will be applied and the necessary modifications to the input lay...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems 1996-05, Vol.13 (2), p.95-103
Hauptverfasser: Menéndez, C., Ordieres, J.B., Ortega, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:: This paper compares the success ratio of certain topologies when their input data are changed through different pre‐processing methods. It begins with the database description, and it shows some different kinds of pre‐processing that will be applied and the necessary modifications to the input layer of the network. The process is carried out using four networks with supervised learning (Standard Backpropagation, Quick propagation, Resilient Propagation and Backpropagation with Momentum) and two with unsupervised learning (ART 1 and Dynamic Learning Vector Quantization).
ISSN:0266-4720
1468-0394
DOI:10.1111/j.1468-0394.1996.tb00182.x