RANK ESTIMATORS FOR A TRANSFORMATION MODEL
We establish [square root]n-consistency and asymptotic normality of Han's (1987a, Journal of Econometrics 35, 191–209) estimator of the parameters characterizing the transformation function in a semiparametric transformation model. We verify a Vapnik–Cervonenkis (VC) condition for the parameter...
Gespeichert in:
Veröffentlicht in: | Econometric theory 2002-10, Vol.18 (5), p.1099-1120 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish [square root]n-consistency and asymptotic normality
of Han's (1987a, Journal of Econometrics 35, 191–209)
estimator of the parameters characterizing the transformation
function in a semiparametric transformation model. We verify
a Vapnik–Cervonenkis (VC) condition for the parameterizations
of Box and Cox (1964, Journal of the Royal Statistical Society,
Series B 34, 187–200) and Bickel and Doksum (1981,
Journal of the American Statistical Association 76,
296–311). The verification establishes the VC property
for a class of sets generated by a nonlinear function of the
transformation parameters. We also introduce a new class of
rank estimators for these parameters. These estimators require
only O(n2 logn) computations
to evaluate the criterion function, compared to
O(n4) computations
for Han's estimator. We prove that these estimators are
also [square root]n-consistent and asymptotically normal.
A simulation study compares two of the new estimators to Han's
estimator, the fully parametric estimator of Bickel and Doksum (1981),
and the nonlinear two-stage least squares estimator of Amemiya
and Powell (1981, Journal of Econometrics 17, 351–381). |
---|---|
ISSN: | 0266-4666 1469-4360 |
DOI: | 10.1017/S0266466602185045 |