The unbalanced nested error component regression model

This paper considers a nested error component model with unbalanced data and proposes simple analysis of variance (ANOVA), maximum likelihood (MLE) and minimum norm quadratic unbiased estimators (MINQUE)-type estimators of the variance components. These are natural extensions from the biometrics, st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2001-04, Vol.101 (2), p.357-381
Hauptverfasser: H. Baltagi, Badi, Heun Song, Seuck, Cheol Jung, Byoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers a nested error component model with unbalanced data and proposes simple analysis of variance (ANOVA), maximum likelihood (MLE) and minimum norm quadratic unbiased estimators (MINQUE)-type estimators of the variance components. These are natural extensions from the biometrics, statistics and econometrics literature. The performance of these estimators is investigated by means of Monte Carlo experiments. While the MLE and MINQUE methods perform the best in estimating the variance components and the standard errors of the regression coefficients, the simple ANOVA methods perform just as well in estimating the regression coefficients. These estimation methods are also used to investigate the productivity of public capital in private production.
ISSN:0304-4076
1872-6895
DOI:10.1016/S0304-4076(00)00089-0