Upper and lower bounds for sums of random variables
In this contribution, the upper bounds for sums of dependent random variables X 1+ X 2+⋯+ X n derived by using comonotonicity are sharpened for the case when there exists a random variable Z such that the distribution functions of the X i , given Z= z, are known. By a similar technique, lower bounds...
Gespeichert in:
Veröffentlicht in: | Insurance, mathematics & economics mathematics & economics, 2000-10, Vol.27 (2), p.151-168 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this contribution, the upper bounds for sums of dependent random variables
X
1+
X
2+⋯+
X
n
derived by using comonotonicity are sharpened for the case when there exists a random variable Z such that the distribution functions of the
X
i
, given
Z=
z, are known. By a similar technique, lower bounds are derived. A numerical application for the case of lognormal random variables is given. |
---|---|
ISSN: | 0167-6687 1873-5959 |
DOI: | 10.1016/S0167-6687(00)00060-3 |