Time Series Models in Non-Normal Situations: Symmetric Innovations

We consider AR(q) models in time series with non‐normal innovations represented by a member of a wide family of symmetric distributions (Student's t). Since the ML (maximum likelihood) estimators are intractable, we derive the MML (modified maximum likelihood) estimators of the parameters and s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of time series analysis 2000-09, Vol.21 (5), p.571-596
Hauptverfasser: Tiku, M. L., Wong, Wing-Keung, Vaughan, David C., Bian, Guorui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider AR(q) models in time series with non‐normal innovations represented by a member of a wide family of symmetric distributions (Student's t). Since the ML (maximum likelihood) estimators are intractable, we derive the MML (modified maximum likelihood) estimators of the parameters and show that they are remarkably efficient. We use these estimators for hypothesis testing, and show that the resulting tests are robust and powerful.
ISSN:0143-9782
1467-9892
DOI:10.1111/1467-9892.00199