Two ways of modelling overdispersion in non-normal data

For non-normal data assumed to have distributions, such as the Poisson distribution, which have an a priori dispersion parameter, there are two ways of modelling overdispersion: by a quasi-likelihood approach or with a random-effect model. The two approaches yield different variance functions for th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied statistics 2000, Vol.49 (4), p.591-598
Hauptverfasser: Lee, Y., Nelder, J. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For non-normal data assumed to have distributions, such as the Poisson distribution, which have an a priori dispersion parameter, there are two ways of modelling overdispersion: by a quasi-likelihood approach or with a random-effect model. The two approaches yield different variance functions for the response, which may be distinguishable if adequate data are available. The epilepsy data of Thall and Vail and the fabric data of Bissell are used to exemplify the ideas.
ISSN:0035-9254
1467-9876
DOI:10.1111/1467-9876.00214