Learning Dynamics in Games with Stochastic Perturbations

Consider a generalization of fictitious play in which agents′ choices are perturbed by incomplete information about what the other side has done, variability in their payoffs, and unexplained trembles. These perturbed best reply dynamics define a nonstationary Markov process on an infinite state spa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Games and economic behavior 1995-11, Vol.11 (2), p.330-363
Hauptverfasser: Kaniovski, Yuri M., Young, H.Peyton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consider a generalization of fictitious play in which agents′ choices are perturbed by incomplete information about what the other side has done, variability in their payoffs, and unexplained trembles. These perturbed best reply dynamics define a nonstationary Markov process on an infinite state space. It is shown, using results from stochastic approximation theory, that for 2 × 2 games it converges almost surely to a point that lies close to a stable Nash equilibrium, whether pure or mixed. This generalizes a result of Fudenherg and Kreps, who demonstrate convergence when the game has a unique mixed equilibrium. Journal of Economic Literature Classification Numbers: 000, 000, 000.
ISSN:0899-8256
1090-2473
DOI:10.1006/game.1995.1054