The sensitivity of OLS when the variance matrix is (partially) unknown
We consider the standard linear regression model y= Xβ+ u with all standard assumptions, except that the variance matrix is assumed to be σ 2Ω(θ) , where Ω depends on m unknown parameters θ 1,…, θ m . Our interest lies exclusively in the mean parameters β or Xβ. We introduce a new sensitivity statis...
Gespeichert in:
Veröffentlicht in: | Journal of econometrics 1999-10, Vol.92 (2), p.295-323 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the standard linear regression model
y=
Xβ+
u with all standard assumptions, except that the variance matrix is assumed to be
σ
2Ω(θ)
, where
Ω depends on
m unknown parameters
θ
1,…,
θ
m
. Our interest lies exclusively in the mean parameters
β or
Xβ. We introduce a new sensitivity statistic (
B1) which is designed to decide whether
ŷ (or
β
̂
) is sensitive to covariance misspecification. We show that the Durbin–Watson test is inappropriate in this context, because it measures the sensitivity of
σ
̂
2
to covariance misspecification. Our results demonstrate that the estimator
β
̂
and the predictor
ŷ are not very sensitive to covariance misspecification. The statistic is easy to use and performs well even in cases where it is not strictly applicable. |
---|---|
ISSN: | 0304-4076 1872-6895 |
DOI: | 10.1016/S0304-4076(98)00093-1 |