Term Structure Models Driven by General Lévy Processes

As a generalization of the Gaussian Heath–Jarrow–Morton term structure model, we present a new class of bond price models that can be driven by a wide range of Lévy processes. We deduce the forward and short rate processes implied by this model and prove that, under certain assumptions, the short ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical finance 1999-01, Vol.9 (1), p.31-53
Hauptverfasser: Eberlein, Ernst, Raible, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a generalization of the Gaussian Heath–Jarrow–Morton term structure model, we present a new class of bond price models that can be driven by a wide range of Lévy processes. We deduce the forward and short rate processes implied by this model and prove that, under certain assumptions, the short rate is Markovian if and only if the volatility structure has either the Vasicek or the Ho–Lee form. Finally, we compare numerically forward rates and European call option prices in a model driven by a hyperbolic Lévy motion with those in the Gaussian model.
ISSN:0960-1627
1467-9965
DOI:10.1111/1467-9965.00062