On maximum likelihood estimation of the differencing parameter of fractionally-integrated noise with unknown mean
There are two approaches to maximum likelihood (ML) estimation of the parameter of fractionally- integrated noise: approximate frequency-domain ML [Fox and Taqqu (1986)] and exact time- domain ML [Sowell (1992b)]. If the mean of the process is known, then a clear finite-sample mean-squared error ran...
Gespeichert in:
Veröffentlicht in: | Journal of econometrics 1994-06, Vol.62 (2), p.301-316 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There are two approaches to maximum likelihood (ML) estimation of the parameter of fractionally- integrated noise: approximate frequency-domain ML [Fox and Taqqu (1986)] and exact time- domain ML [Sowell (1992b)]. If the mean of the process is
known, then a clear finite-sample mean-squared error ranking of the estimators emerges: the exact time-domain estimator is superior. We show in this paper, however, that the finite-sample efficiency of approximate frequency-domain ML relative to exact time-domain ML rises dramatically when the mean is unknown and so must be estimated. The intuition for our result is straightforward: the frequency-domain ML estimator is invariant to the true but unknown mean of the process, while the time-domain ML estimator is not. Feasible time-domain estimation must therefore be based upon de-meaned data, but the long memory associated with fractional integration makes precise estimation of the mean difficult. We conclude that the frequency-domain estimator is an attractive and efficient alternative for situations in which large sample sizes render time-domain estimation impractical. |
---|---|
ISSN: | 0304-4076 1872-6895 |
DOI: | 10.1016/0304-4076(94)90026-4 |