Outliers in multilevel data

This paper offers the data analyst a range of practical procedures for dealing with outliers in multilevel data. It first develops several techniques for data exploration for outliers and outlier analysis and then applies these to the detailed analysis of outliers in two large scale multilevel data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series A, Statistics in society Statistics in society, 1998, Vol.161 (2), p.121-160
Hauptverfasser: Langford, I. H., Lewis, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper offers the data analyst a range of practical procedures for dealing with outliers in multilevel data. It first develops several techniques for data exploration for outliers and outlier analysis and then applies these to the detailed analysis of outliers in two large scale multilevel data sets from educational contexts. The techniques include the use of deviance reduction, measures based on residuals, leverage values, hierarchical cluster analysis and a measure called DFITS. Outlier analysis is more complex in a multilevel data set than in, say, a univariate sample or a set of regression data, where the concept of an outlying value is straightforward. In the multilevel situation one has to consider, for example, at what level or levels a particular response is outlying, and in respect of which explanatory variables; furthermore, the treatment of a particular response at one level may affect its status or the status of other units at other levels in the model.
ISSN:0964-1998
1467-985X
DOI:10.1111/1467-985X.00094