Rank estimators for monotonic index models

We present a new class of rank estimators of scaled coefficients in semiparametric monotonic linear index models. The estimators require no subjective bandwidth choices and have attractive computational properties. We establish √ n-consistency and asymptotic normality, and provide the general form a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 1998-06, Vol.84 (2), p.351-381
Hauptverfasser: Cavanagh, Christopher, Sherman, Robert P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new class of rank estimators of scaled coefficients in semiparametric monotonic linear index models. The estimators require no subjective bandwidth choices and have attractive computational properties. We establish √ n-consistency and asymptotic normality, and provide the general form and consistent estimators of the asymptotic covariance matrix. We also provide a generalization covering single equation multiple-indices models satisfying certain monotonicity constraints. An analogue of consistency when all explanatory variables are categorical is established, and an application is presented.
ISSN:0304-4076
1872-6895
DOI:10.1016/S0304-4076(97)00090-0