Asymptotics for Semiparametric Econometric Models Via Stochastic Equicontinuity

This paper provides a general framework for proving the $\sqrt{T}\text{-consistency}$ and asymptotic normality of a wide variety of semiparametric estimators. The class of estimators considered consists of estimators that can be defined as the solution to a minimization problem based on a criterion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometrica 1994-01, Vol.62 (1), p.43-72
1. Verfasser: ANDREWS, D. W. K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper provides a general framework for proving the $\sqrt{T}\text{-consistency}$ and asymptotic normality of a wide variety of semiparametric estimators. The class of estimators considered consists of estimators that can be defined as the solution to a minimization problem based on a criterion function that may depend on a preliminary infinite dimensional nuisance parameter estimator. The method of proof exploits results concerning the stochastic equicontinuity of stochastic processes. The results are applied to the problem of semiparametric weighted least squares estimation of partially parametric regression models. Primitive conditions are given for $\sqrt{T}\text{-consistency}$ and asymptotic normality of this estimator.
ISSN:0012-9682
1468-0262
DOI:10.2307/2951475