A note on the inhomogeneous linear stochastic differential equation

The inhomogeneous linear SDE X = C + ∫ 0 + X -   d R , where X and C are càdlàg processes and R is a semimartingale, is solved. We give the solution in a “nice” form, which is also more general than that of Yoeurp and Yor [Espace orthogonal à une semi-martingale, Unpublished, 1977]. This SDE has a v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insurance, mathematics & economics mathematics & economics, 2003-07, Vol.32 (3), p.461-464
1. Verfasser: Jaschke, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The inhomogeneous linear SDE X = C + ∫ 0 + X -   d R , where X and C are càdlàg processes and R is a semimartingale, is solved. We give the solution in a “nice” form, which is also more general than that of Yoeurp and Yor [Espace orthogonal à une semi-martingale, Unpublished, 1977]. This SDE has a very natural interpretation in finance. If C is a stochastic cash flow and R is the return process of a money market account (that is, N t = N 0 ɛ ( R ) t is the value of the money market account at time t), then the solution X t is the time- t value of the cash flow C accumulated in the money market account (at the stochastic interest “rate” d R) over the time interval [0, t].
ISSN:0167-6687
1873-5959
DOI:10.1016/S0167-6687(03)00134-3