Numerical representability of semiorders
In the framework of the analysis of orderings whose associated indifference relation is not necessarily transitive, we study the structure of a semiorder, and its representability through a real-valued function and a threshold. Inspired in a recent characterization of the representability of interva...
Gespeichert in:
Veröffentlicht in: | Mathematical social sciences 2002, Vol.43 (1), p.61-77 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 77 |
---|---|
container_issue | 1 |
container_start_page | 61 |
container_title | Mathematical social sciences |
container_volume | 43 |
creator | Candeal, Juan Carlos Induráin, Esteban Zudaire, Margarita |
description | In the framework of the analysis of orderings whose associated indifference relation is not necessarily transitive, we study the structure of a semiorder, and its representability through a real-valued function and a threshold. Inspired in a recent characterization of the representability of interval orders, we obtain a full characterization of the existence of numerical representations for semiorders. This is an extension to the general case of the classical Scott–Suppes theorem concerning the representability of semiorders defined on finite sets. |
doi_str_mv | 10.1016/S0165-4896(01)00082-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38361878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165489601000828</els_id><sourcerecordid>38361878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-229636e9de3ec0ed2ad18beb40fce3dbe438990e7fa388a8d223b516e148a70c3</originalsourceid><addsrcrecordid>eNqFUD1PwzAUtBBIlMJPQOqEyhDwR-I4E0IVUKQKBmB-cuwXYZQ0wXYr9d_jEtSV4e4td6d3R8glozeMMnn7lqjIclXJOWXXlFLFM3VEJkyVVSYYU8dkcpCckrMQvpKo5JRNyPxl06F3Rrczj4PHgOuoa9e6uJv1zSxg53pv0YdzctLoNuDF352Sj8eH98UyW70-PS_uV5nJZREzzispJFYWBRqKlmvLVI11ThuDwtaYC1VVFMtGC6W0spyLumASWa50SY2Ykqsxd_D99wZDhM4Fg22r19hvAgglZCqmkrAYhcb3IXhsYPCu034HjMJ-F_jdBfalgTL43QX2vuXoS33RHEyI2OkYegNbEDoXiXYJnFKejktgCUOCZFCW8Bm7FHU3RmEaZOvQQzAO1wat82gi2N7988wP41-C3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>38361878</pqid></control><display><type>article</type><title>Numerical representability of semiorders</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>Candeal, Juan Carlos ; Induráin, Esteban ; Zudaire, Margarita</creator><creatorcontrib>Candeal, Juan Carlos ; Induráin, Esteban ; Zudaire, Margarita</creatorcontrib><description>In the framework of the analysis of orderings whose associated indifference relation is not necessarily transitive, we study the structure of a semiorder, and its representability through a real-valued function and a threshold. Inspired in a recent characterization of the representability of interval orders, we obtain a full characterization of the existence of numerical representations for semiorders. This is an extension to the general case of the classical Scott–Suppes theorem concerning the representability of semiorders defined on finite sets.</description><identifier>ISSN: 0165-4896</identifier><identifier>EISSN: 1879-3118</identifier><identifier>DOI: 10.1016/S0165-4896(01)00082-8</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Mathematical economics ; Measurement ; Numbers ; Numerical representations of orderings ; Orderings on a set ; Semiorders</subject><ispartof>Mathematical social sciences, 2002, Vol.43 (1), p.61-77</ispartof><rights>2002 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-229636e9de3ec0ed2ad18beb40fce3dbe438990e7fa388a8d223b516e148a70c3</citedby><cites>FETCH-LOGICAL-c465t-229636e9de3ec0ed2ad18beb40fce3dbe438990e7fa388a8d223b516e148a70c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0165-4896(01)00082-8$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeematsoc/v_3a43_3ay_3a2002_3ai_3a1_3ap_3a61-77.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Candeal, Juan Carlos</creatorcontrib><creatorcontrib>Induráin, Esteban</creatorcontrib><creatorcontrib>Zudaire, Margarita</creatorcontrib><title>Numerical representability of semiorders</title><title>Mathematical social sciences</title><description>In the framework of the analysis of orderings whose associated indifference relation is not necessarily transitive, we study the structure of a semiorder, and its representability through a real-valued function and a threshold. Inspired in a recent characterization of the representability of interval orders, we obtain a full characterization of the existence of numerical representations for semiorders. This is an extension to the general case of the classical Scott–Suppes theorem concerning the representability of semiorders defined on finite sets.</description><subject>Mathematical economics</subject><subject>Measurement</subject><subject>Numbers</subject><subject>Numerical representations of orderings</subject><subject>Orderings on a set</subject><subject>Semiorders</subject><issn>0165-4896</issn><issn>1879-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUD1PwzAUtBBIlMJPQOqEyhDwR-I4E0IVUKQKBmB-cuwXYZQ0wXYr9d_jEtSV4e4td6d3R8glozeMMnn7lqjIclXJOWXXlFLFM3VEJkyVVSYYU8dkcpCckrMQvpKo5JRNyPxl06F3Rrczj4PHgOuoa9e6uJv1zSxg53pv0YdzctLoNuDF352Sj8eH98UyW70-PS_uV5nJZREzzispJFYWBRqKlmvLVI11ThuDwtaYC1VVFMtGC6W0spyLumASWa50SY2Ykqsxd_D99wZDhM4Fg22r19hvAgglZCqmkrAYhcb3IXhsYPCu034HjMJ-F_jdBfalgTL43QX2vuXoS33RHEyI2OkYegNbEDoXiXYJnFKejktgCUOCZFCW8Bm7FHU3RmEaZOvQQzAO1wat82gi2N7988wP41-C3A</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Candeal, Juan Carlos</creator><creator>Induráin, Esteban</creator><creator>Zudaire, Margarita</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>2002</creationdate><title>Numerical representability of semiorders</title><author>Candeal, Juan Carlos ; Induráin, Esteban ; Zudaire, Margarita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-229636e9de3ec0ed2ad18beb40fce3dbe438990e7fa388a8d223b516e148a70c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Mathematical economics</topic><topic>Measurement</topic><topic>Numbers</topic><topic>Numerical representations of orderings</topic><topic>Orderings on a set</topic><topic>Semiorders</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Candeal, Juan Carlos</creatorcontrib><creatorcontrib>Induráin, Esteban</creatorcontrib><creatorcontrib>Zudaire, Margarita</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Mathematical social sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Candeal, Juan Carlos</au><au>Induráin, Esteban</au><au>Zudaire, Margarita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical representability of semiorders</atitle><jtitle>Mathematical social sciences</jtitle><date>2002</date><risdate>2002</risdate><volume>43</volume><issue>1</issue><spage>61</spage><epage>77</epage><pages>61-77</pages><issn>0165-4896</issn><eissn>1879-3118</eissn><abstract>In the framework of the analysis of orderings whose associated indifference relation is not necessarily transitive, we study the structure of a semiorder, and its representability through a real-valued function and a threshold. Inspired in a recent characterization of the representability of interval orders, we obtain a full characterization of the existence of numerical representations for semiorders. This is an extension to the general case of the classical Scott–Suppes theorem concerning the representability of semiorders defined on finite sets.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0165-4896(01)00082-8</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-4896 |
ispartof | Mathematical social sciences, 2002, Vol.43 (1), p.61-77 |
issn | 0165-4896 1879-3118 |
language | eng |
recordid | cdi_proquest_miscellaneous_38361878 |
source | RePEc; Access via ScienceDirect (Elsevier) |
subjects | Mathematical economics Measurement Numbers Numerical representations of orderings Orderings on a set Semiorders |
title | Numerical representability of semiorders |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20representability%20of%20semiorders&rft.jtitle=Mathematical%20social%20sciences&rft.au=Candeal,%20Juan%20Carlos&rft.date=2002&rft.volume=43&rft.issue=1&rft.spage=61&rft.epage=77&rft.pages=61-77&rft.issn=0165-4896&rft.eissn=1879-3118&rft_id=info:doi/10.1016/S0165-4896(01)00082-8&rft_dat=%3Cproquest_cross%3E38361878%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=38361878&rft_id=info:pmid/&rft_els_id=S0165489601000828&rfr_iscdi=true |