Numerical representability of semiorders

In the framework of the analysis of orderings whose associated indifference relation is not necessarily transitive, we study the structure of a semiorder, and its representability through a real-valued function and a threshold. Inspired in a recent characterization of the representability of interva...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical social sciences 2002, Vol.43 (1), p.61-77
Hauptverfasser: Candeal, Juan Carlos, Induráin, Esteban, Zudaire, Margarita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 77
container_issue 1
container_start_page 61
container_title Mathematical social sciences
container_volume 43
creator Candeal, Juan Carlos
Induráin, Esteban
Zudaire, Margarita
description In the framework of the analysis of orderings whose associated indifference relation is not necessarily transitive, we study the structure of a semiorder, and its representability through a real-valued function and a threshold. Inspired in a recent characterization of the representability of interval orders, we obtain a full characterization of the existence of numerical representations for semiorders. This is an extension to the general case of the classical Scott–Suppes theorem concerning the representability of semiorders defined on finite sets.
doi_str_mv 10.1016/S0165-4896(01)00082-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38361878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165489601000828</els_id><sourcerecordid>38361878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-229636e9de3ec0ed2ad18beb40fce3dbe438990e7fa388a8d223b516e148a70c3</originalsourceid><addsrcrecordid>eNqFUD1PwzAUtBBIlMJPQOqEyhDwR-I4E0IVUKQKBmB-cuwXYZQ0wXYr9d_jEtSV4e4td6d3R8glozeMMnn7lqjIclXJOWXXlFLFM3VEJkyVVSYYU8dkcpCckrMQvpKo5JRNyPxl06F3Rrczj4PHgOuoa9e6uJv1zSxg53pv0YdzctLoNuDF352Sj8eH98UyW70-PS_uV5nJZREzzispJFYWBRqKlmvLVI11ThuDwtaYC1VVFMtGC6W0spyLumASWa50SY2Ykqsxd_D99wZDhM4Fg22r19hvAgglZCqmkrAYhcb3IXhsYPCu034HjMJ-F_jdBfalgTL43QX2vuXoS33RHEyI2OkYegNbEDoXiXYJnFKejktgCUOCZFCW8Bm7FHU3RmEaZOvQQzAO1wat82gi2N7988wP41-C3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>38361878</pqid></control><display><type>article</type><title>Numerical representability of semiorders</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>Candeal, Juan Carlos ; Induráin, Esteban ; Zudaire, Margarita</creator><creatorcontrib>Candeal, Juan Carlos ; Induráin, Esteban ; Zudaire, Margarita</creatorcontrib><description>In the framework of the analysis of orderings whose associated indifference relation is not necessarily transitive, we study the structure of a semiorder, and its representability through a real-valued function and a threshold. Inspired in a recent characterization of the representability of interval orders, we obtain a full characterization of the existence of numerical representations for semiorders. This is an extension to the general case of the classical Scott–Suppes theorem concerning the representability of semiorders defined on finite sets.</description><identifier>ISSN: 0165-4896</identifier><identifier>EISSN: 1879-3118</identifier><identifier>DOI: 10.1016/S0165-4896(01)00082-8</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Mathematical economics ; Measurement ; Numbers ; Numerical representations of orderings ; Orderings on a set ; Semiorders</subject><ispartof>Mathematical social sciences, 2002, Vol.43 (1), p.61-77</ispartof><rights>2002 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-229636e9de3ec0ed2ad18beb40fce3dbe438990e7fa388a8d223b516e148a70c3</citedby><cites>FETCH-LOGICAL-c465t-229636e9de3ec0ed2ad18beb40fce3dbe438990e7fa388a8d223b516e148a70c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0165-4896(01)00082-8$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeematsoc/v_3a43_3ay_3a2002_3ai_3a1_3ap_3a61-77.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Candeal, Juan Carlos</creatorcontrib><creatorcontrib>Induráin, Esteban</creatorcontrib><creatorcontrib>Zudaire, Margarita</creatorcontrib><title>Numerical representability of semiorders</title><title>Mathematical social sciences</title><description>In the framework of the analysis of orderings whose associated indifference relation is not necessarily transitive, we study the structure of a semiorder, and its representability through a real-valued function and a threshold. Inspired in a recent characterization of the representability of interval orders, we obtain a full characterization of the existence of numerical representations for semiorders. This is an extension to the general case of the classical Scott–Suppes theorem concerning the representability of semiorders defined on finite sets.</description><subject>Mathematical economics</subject><subject>Measurement</subject><subject>Numbers</subject><subject>Numerical representations of orderings</subject><subject>Orderings on a set</subject><subject>Semiorders</subject><issn>0165-4896</issn><issn>1879-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUD1PwzAUtBBIlMJPQOqEyhDwR-I4E0IVUKQKBmB-cuwXYZQ0wXYr9d_jEtSV4e4td6d3R8glozeMMnn7lqjIclXJOWXXlFLFM3VEJkyVVSYYU8dkcpCckrMQvpKo5JRNyPxl06F3Rrczj4PHgOuoa9e6uJv1zSxg53pv0YdzctLoNuDF352Sj8eH98UyW70-PS_uV5nJZREzzispJFYWBRqKlmvLVI11ThuDwtaYC1VVFMtGC6W0spyLumASWa50SY2Ykqsxd_D99wZDhM4Fg22r19hvAgglZCqmkrAYhcb3IXhsYPCu034HjMJ-F_jdBfalgTL43QX2vuXoS33RHEyI2OkYegNbEDoXiXYJnFKejktgCUOCZFCW8Bm7FHU3RmEaZOvQQzAO1wat82gi2N7988wP41-C3A</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Candeal, Juan Carlos</creator><creator>Induráin, Esteban</creator><creator>Zudaire, Margarita</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>2002</creationdate><title>Numerical representability of semiorders</title><author>Candeal, Juan Carlos ; Induráin, Esteban ; Zudaire, Margarita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-229636e9de3ec0ed2ad18beb40fce3dbe438990e7fa388a8d223b516e148a70c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Mathematical economics</topic><topic>Measurement</topic><topic>Numbers</topic><topic>Numerical representations of orderings</topic><topic>Orderings on a set</topic><topic>Semiorders</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Candeal, Juan Carlos</creatorcontrib><creatorcontrib>Induráin, Esteban</creatorcontrib><creatorcontrib>Zudaire, Margarita</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Mathematical social sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Candeal, Juan Carlos</au><au>Induráin, Esteban</au><au>Zudaire, Margarita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical representability of semiorders</atitle><jtitle>Mathematical social sciences</jtitle><date>2002</date><risdate>2002</risdate><volume>43</volume><issue>1</issue><spage>61</spage><epage>77</epage><pages>61-77</pages><issn>0165-4896</issn><eissn>1879-3118</eissn><abstract>In the framework of the analysis of orderings whose associated indifference relation is not necessarily transitive, we study the structure of a semiorder, and its representability through a real-valued function and a threshold. Inspired in a recent characterization of the representability of interval orders, we obtain a full characterization of the existence of numerical representations for semiorders. This is an extension to the general case of the classical Scott–Suppes theorem concerning the representability of semiorders defined on finite sets.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0165-4896(01)00082-8</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-4896
ispartof Mathematical social sciences, 2002, Vol.43 (1), p.61-77
issn 0165-4896
1879-3118
language eng
recordid cdi_proquest_miscellaneous_38361878
source RePEc; Access via ScienceDirect (Elsevier)
subjects Mathematical economics
Measurement
Numbers
Numerical representations of orderings
Orderings on a set
Semiorders
title Numerical representability of semiorders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20representability%20of%20semiorders&rft.jtitle=Mathematical%20social%20sciences&rft.au=Candeal,%20Juan%20Carlos&rft.date=2002&rft.volume=43&rft.issue=1&rft.spage=61&rft.epage=77&rft.pages=61-77&rft.issn=0165-4896&rft.eissn=1879-3118&rft_id=info:doi/10.1016/S0165-4896(01)00082-8&rft_dat=%3Cproquest_cross%3E38361878%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=38361878&rft_id=info:pmid/&rft_els_id=S0165489601000828&rfr_iscdi=true