Numerical representability of semiorders
In the framework of the analysis of orderings whose associated indifference relation is not necessarily transitive, we study the structure of a semiorder, and its representability through a real-valued function and a threshold. Inspired in a recent characterization of the representability of interva...
Gespeichert in:
Veröffentlicht in: | Mathematical social sciences 2002, Vol.43 (1), p.61-77 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the framework of the analysis of orderings whose associated indifference relation is not necessarily transitive, we study the structure of a semiorder, and its representability through a real-valued function and a threshold. Inspired in a recent characterization of the representability of interval orders, we obtain a full characterization of the existence of numerical representations for semiorders. This is an extension to the general case of the classical Scott–Suppes theorem concerning the representability of semiorders defined on finite sets. |
---|---|
ISSN: | 0165-4896 1879-3118 |
DOI: | 10.1016/S0165-4896(01)00082-8 |