ON THE LOG PERIODOGRAM REGRESSION ESTIMATOR OF THE MEMORY PARAMETER IN LONG MEMORY STOCHASTIC VOLATILITY MODELS

We consider semiparametric estimation of the memory parameter in a long memory stochastic volatility model. We study the estimator based on a log periodogram regression as originally proposed by Geweke and Porter-Hudak (1983, Journal of Time Series Analysis 4, 221–238). Expressions for the asymptoti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometric theory 2001-08, Vol.17 (4), p.686-710
Hauptverfasser: Deo, Rohit S., Hurvich, Clifford M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider semiparametric estimation of the memory parameter in a long memory stochastic volatility model. We study the estimator based on a log periodogram regression as originally proposed by Geweke and Porter-Hudak (1983, Journal of Time Series Analysis 4, 221–238). Expressions for the asymptotic bias and variance of the estimator are obtained, and the asymptotic distribution is shown to be the same as that obtained in recent literature for a Gaussian long memory series. The theoretical result does not require omission of a block of frequencies near the origin. We show that this ability to use the lowest frequencies is particularly desirable in the context of the long memory stochastic volatility model.
ISSN:0266-4666
1469-4360
DOI:10.1017/S0266466601174025