SOME CONVERGENCE THEORY FOR ITERATIVE ESTIMATION PROCEDURES WITH AN APPLICATION TO SEMIPARAMETRIC ESTIMATION

We develop general conditions for rates of convergence and convergence in distribution of iterative procedures for estimating finite-dimensional parameters. An asymptotic contraction mapping condition is the centerpiece of the theory. We illustrate some of the results by deriving the limiting distri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometric theory 2005-08, Vol.21 (4), p.838-863
Hauptverfasser: Dominitz, Jeff, Sherman, Robert P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop general conditions for rates of convergence and convergence in distribution of iterative procedures for estimating finite-dimensional parameters. An asymptotic contraction mapping condition is the centerpiece of the theory. We illustrate some of the results by deriving the limiting distribution of a two-stage iterative estimator of regression parameters in a semiparametric binary response model. Simulation results illustrating the computational benefits of the first-stage iterative estimator are also reported.We thank a co-editor and two referees for comments and criticisms that led to significant improvements in this paper. We also thank Roger Klein for providing us with Gauss code to compute his estimator.
ISSN:0266-4666
1469-4360
DOI:10.1017/S0266466605050425