Asymptotic self-similarity and wavelet estimation for long-range dependent fractional autoregressive integrated moving average time series with stable innovations

.  Methods for parameter estimation in the presence of long‐range dependence and heavy tails are scarce. Fractional autoregressive integrated moving average (FARIMA) time series for positive values of the fractional differencing exponent d can be used to model long‐range dependence in the case of he...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of time series analysis 2005-03, Vol.26 (2), p.211-249
Hauptverfasser: Stoev, Stilian, Taqqu, Murad S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:.  Methods for parameter estimation in the presence of long‐range dependence and heavy tails are scarce. Fractional autoregressive integrated moving average (FARIMA) time series for positive values of the fractional differencing exponent d can be used to model long‐range dependence in the case of heavy‐tailed distributions. In this paper, we focus on the estimation of the Hurst parameter H = d + 1/α for long‐range dependent FARIMA time series with symmetric α‐stable (1 
ISSN:0143-9782
1467-9892
DOI:10.1111/j.1467-9892.2005.00399.x