Parametric pricing of higher order moments in S&P500 options
A general parametric framework based on the generalized Student t-distribution is developed for pricing S&P500 options. Higher order moments in stock returns as well as time-varying volatility are priced. An important computational advantage of the proposed framework over Monte Carlo-based prici...
Gespeichert in:
Veröffentlicht in: | Journal of applied econometrics (Chichester, England) England), 2005-03, Vol.20 (3), p.377-404 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A general parametric framework based on the generalized Student t-distribution is developed for pricing S&P500 options. Higher order moments in stock returns as well as time-varying volatility are priced. An important computational advantage of the proposed framework over Monte Carlo-based pricing methods is that options can be priced using one-dimensional quadrature integration. The empirical application is based on S&P500 options traded on select days in April 1995, a total sample of over 100,000 observations. A range of performance criteria are used to evaluate the proposed model, as well as a number of alternative models. The empirical results show that pricing higher order moments and time-varying volatility yields improvements in the pricing of options, as well as correcting the volatility skew associated with the Black-Scholes model. |
---|---|
ISSN: | 0883-7252 1099-1255 |
DOI: | 10.1002/jae.762 |