Improved unbiased estimators in adaptive cluster sampling

The usual design-unbiased estimators in adaptive cluster sampling are easy to compute but are not functions of the minimal sufficient statistic and hence can be improved. Improved unbiased estimators obtained by conditioning on sufficient statistics-not necessarily minimal-are described. First, esti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2005-02, Vol.67 (1), p.157-166
Hauptverfasser: Dryver, Arthur L., Thompson, Steven K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The usual design-unbiased estimators in adaptive cluster sampling are easy to compute but are not functions of the minimal sufficient statistic and hence can be improved. Improved unbiased estimators obtained by conditioning on sufficient statistics-not necessarily minimal-are described. First, estimators that are as easy to compute as the usual design-unbiased estimators are given. Estimators obtained by conditioning on the minimal sufficient statistic which are more difficult to compute are also discussed. Estimators are compared in examples.
ISSN:1369-7412
1467-9868
DOI:10.1111/j.1467-9868.2005.00493.x