Risk-reducing shrinkage estimation for generalized linear models

Empirical Bayes techniques for normal theory shrinkage estimation are extended to generalized linear models in a manner retaining the original spirit of shrinkage estimation, which is to reduce risk. The investigation identifies two classes of simple, all-purpose prior distributions, which supplemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2005-02, Vol.67 (1), p.183-196
1. Verfasser: Spitzner, Dan J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Empirical Bayes techniques for normal theory shrinkage estimation are extended to generalized linear models in a manner retaining the original spirit of shrinkage estimation, which is to reduce risk. The investigation identifies two classes of simple, all-purpose prior distributions, which supplement such non-informative priors as Jeffreys's prior with mechanisms for risk reduction. One new class of priors is motivated as optimizers of a core component of asymptotic risk. The methodology is evaluated in a numerical exploration and application to an existing data set.
ISSN:1369-7412
1467-9868
DOI:10.1111/j.1467-9868.2005.00495.x