Efficiency of generalized estimating equations for binary responses

Using standard correlation bounds, we show that in generalized estimation equations (GEEs) the so-called 'working correlation matrix' R(α) for analysing binary data cannot in general be the true correlation matrix of the data. Methods for estimating the correlation parameter in current GEE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2004-11, Vol.66 (4), p.851-860
Hauptverfasser: Rao Chaganty, N., Joe, Harry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using standard correlation bounds, we show that in generalized estimation equations (GEEs) the so-called 'working correlation matrix' R(α) for analysing binary data cannot in general be the true correlation matrix of the data. Methods for estimating the correlation parameter in current GEE software for binary responses disregard these bounds. To show that the GEE applied on binary data has high efficiency, we use a multivariate binary model so that the covariance matrix from estimating equation theory can be compared with the inverse Fisher information matrix. But R(α) should be viewed as the weight matrix, and it should not be confused with the correlation matrix of the binary responses. We also do a comparison with more general weighted estimating equations by using a matrix Cauchy-Schwarz inequality. Our analysis leads to simple rules for the choice of α in an exchangeable or autoregressive AR(1) weight matrix R(α), based on the strength of dependence between the binary variables. An example is given to illustrate the assessment of dependence and choice of α.
ISSN:1369-7412
1467-9868
DOI:10.1111/j.1467-9868.2004.05741.x