Bayesian inference for non-Gaussian Ornstein-Uhlenbeck stochastic volatility processes

We develop Markov chain Monte Carlo methodology for Bayesian inference for non-Gaussian Ornstein-Uhlenbeck stochastic volatility processes. The approach introduced involves expressing the unobserved stochastic volatility process in terms of a suitable marked Poisson process. We introduce two specifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2004-01, Vol.66 (2), p.369-393
Hauptverfasser: Roberts, Gareth O., Papaspiliopoulos, Omiros, Dellaportas, Petros
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop Markov chain Monte Carlo methodology for Bayesian inference for non-Gaussian Ornstein-Uhlenbeck stochastic volatility processes. The approach introduced involves expressing the unobserved stochastic volatility process in terms of a suitable marked Poisson process. We introduce two specific classes of Metropolis-Hastings algorithms which correspond to different ways of jointly parameterizing the marked point process and the model parameters. The performance of the methods is investigated for different types of simulated data. The approach is extended to consider the case where the volatility process is expressed as a superposition of Ornstein-Uhlenbeck processes. We apply our methodology to the US dollar-Deutschmark exchange rate.
ISSN:1369-7412
1467-9868
DOI:10.1111/j.1369-7412.2004.05139.x