Alternative sampling methods for estimating multivariate normal probabilities

We study the performance of alternative sampling methods for estimating multivariate normal probabilities through the GHK simulator. The sampling methods are randomized versions of some quasi-Monte Carlo samples (Halton, Niederreiter, Niederreiter–Xing sequences and lattice points) and some samples...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2004-06, Vol.120 (2), p.207-234
Hauptverfasser: SANDOR, Zsolt, ANDRAS, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the performance of alternative sampling methods for estimating multivariate normal probabilities through the GHK simulator. The sampling methods are randomized versions of some quasi-Monte Carlo samples (Halton, Niederreiter, Niederreiter–Xing sequences and lattice points) and some samples based on orthogonal arrays (Latin hypercube, orthogonal array and orthogonal array based Latin hypercube samples). In general, these samples turn out to have a better performance than Monte Carlo and antithetic Monte Carlo samples. Improvements over these are large for low-dimensional (4 and 10) cases and still significant for dimensions as large as 50.
ISSN:0304-4076
1872-6895
DOI:10.1016/S0304-4076(03)00212-4