Estimation of the mean of a univariate normal distribution when the variance is not known
We consider the problem of estimating the first k coefficients in a regression equation with k + 1 variables. For this problem with known variance of innovations, the neutral Laplace weighted-average least-squares estimator was introduced in Magnus (2002). We generalize this estimator to the case wh...
Gespeichert in:
Veröffentlicht in: | The econometrics journal 2005-01, Vol.8 (3), p.277-291 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the problem of estimating the first k coefficients in a regression equation with k + 1 variables. For this problem with known variance of innovations, the neutral Laplace weighted-average least-squares estimator was introduced in Magnus (2002). We generalize this estimator to the case where the unknown variance is estimated by least squares and find that main properties of the Laplace estimator only change marginally. Therefore we recommend the neutral Laplace estimator to be used in practice. |
---|---|
ISSN: | 1368-4221 1368-423X |
DOI: | 10.1111/j.1368-423X.2005.00164.x |