Estimation of the mean of a univariate normal distribution when the variance is not known

We consider the problem of estimating the first k coefficients in a regression equation with k + 1 variables. For this problem with known variance of innovations, the neutral Laplace weighted-average least-squares estimator was introduced in Magnus (2002). We generalize this estimator to the case wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The econometrics journal 2005-01, Vol.8 (3), p.277-291
1. Verfasser: Danilov, Dmitry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of estimating the first k coefficients in a regression equation with k + 1 variables. For this problem with known variance of innovations, the neutral Laplace weighted-average least-squares estimator was introduced in Magnus (2002). We generalize this estimator to the case where the unknown variance is estimated by least squares and find that main properties of the Laplace estimator only change marginally. Therefore we recommend the neutral Laplace estimator to be used in practice.
ISSN:1368-4221
1368-423X
DOI:10.1111/j.1368-423X.2005.00164.x