Sparse additive models

We present a new class of methods for high dimensional non-parametric regression and classification called sparse additive models. Our methods combine ideas from sparse linear modelling and additive non-parametric regression. We derive an algorithm for fitting the models that is practical and effect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2009-11, Vol.71 (5), p.1009-1030
Hauptverfasser: Ravikumar, Pradeep, Lafferty, John, Liu, Han, Wasserman, Larry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new class of methods for high dimensional non-parametric regression and classification called sparse additive models. Our methods combine ideas from sparse linear modelling and additive non-parametric regression. We derive an algorithm for fitting the models that is practical and effective even when the number of covariates is larger than the sample size. Sparse additive models are essentially a functional version of the grouped lasso of Yuan and Lin. They are also closely related to the COSSO model of Lin and Zhang but decouple smoothing and sparsity, enabling the use of arbitrary non-parametric smoothers. We give an analysis of the theoretical properties of sparse additive models and present empirical results on synthetic and real data, showing that they can be effective in fitting sparse non-parametric models in high dimensional data.
ISSN:1369-7412
1467-9868
DOI:10.1111/j.1467-9868.2009.00718.x