Selecting nonlinear time series models using information criteria

.  This article considers the problem of selecting among competing nonlinear time series models by using complexity‐penalized likelihood criteria. An extensive simulation study is undertaken to assess the small‐sample performance of several popular criteria in selecting among nonlinear autoregressiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of time series analysis 2009-07, Vol.30 (4), p.369-394
Hauptverfasser: Psaradakis, Zacharias, Sola, Martin, Spagnolo, Fabio, Spagnolo, Nicola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:.  This article considers the problem of selecting among competing nonlinear time series models by using complexity‐penalized likelihood criteria. An extensive simulation study is undertaken to assess the small‐sample performance of several popular criteria in selecting among nonlinear autoregressive models belonging to some families that have been popular with practitioners.
ISSN:0143-9782
1467-9892
DOI:10.1111/j.1467-9892.2009.00614.x