Forecasting time-varying covariance with a range-based dynamic conditional correlation model

This paper proposes a range-based dynamic conditional correlation (DCC) model combined by the return-based DCC model and the conditional autoregressive range (CARR) model. The substantial gain in efficiency of volatility estimation can boost the accuracy for estimating time-varying covariances. As t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of quantitative finance and accounting 2009-11, Vol.33 (4), p.327-345
Hauptverfasser: Chou, Ray Yeutien, Wu, Chun-Chou, Liu, Nathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a range-based dynamic conditional correlation (DCC) model combined by the return-based DCC model and the conditional autoregressive range (CARR) model. The substantial gain in efficiency of volatility estimation can boost the accuracy for estimating time-varying covariances. As to the empirical study, we use the S&P 500 stock index and the 10-year treasury bond futures to examine both in-sample and out-of-sample results for six models, including MA100, EWMA , CCC , BEKK, return-based DCC, and range-based DCC. Of all the models considered, the range-based DCC model is largely supported in estimating and forecasting the covariance matrices.
ISSN:0924-865X
1573-7179
DOI:10.1007/s11156-009-0113-3