An optimal dividends problem with transaction costs for spectrally negative Lévy processes

We consider an optimal dividends problem with transaction costs where the reserves are modeled by a spectrally negative Lévy process. We make the connection with the classical de Finetti problem and show in particular that when the Lévy measure has a log-convex density, then an optimal strategy is g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insurance, mathematics & economics mathematics & economics, 2009-08, Vol.45 (1), p.41-48
1. Verfasser: Loeffen, R.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider an optimal dividends problem with transaction costs where the reserves are modeled by a spectrally negative Lévy process. We make the connection with the classical de Finetti problem and show in particular that when the Lévy measure has a log-convex density, then an optimal strategy is given by paying out a dividend in such a way that the reserves are reduced to a certain level c 1 whenever they are above another level c 2 . Further we describe a method to numerically find the optimal values of c 1 and c 2 .
ISSN:0167-6687
1873-5959
DOI:10.1016/j.insmatheco.2009.03.002