A Simple Explanation of the Forecast Combination Puzzle

This article presents a formal explanation of the forecast combination puzzle, that simple combinations of point forecasts are repeatedly found to outperform sophisticated weighted combinations in empirical applications. The explanation lies in the effect of finite‐sample error in estimating the com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oxford bulletin of economics and statistics 2009-06, Vol.71 (3), p.331-355
Hauptverfasser: Smith, Jeremy, Wallis, Kenneth F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article presents a formal explanation of the forecast combination puzzle, that simple combinations of point forecasts are repeatedly found to outperform sophisticated weighted combinations in empirical applications. The explanation lies in the effect of finite‐sample error in estimating the combining weights. A small Monte Carlo study and a reappraisal of an empirical study by Stock and Watson [Federal Reserve Bank of Richmond Economic Quarterly (2003) Vol. 89/3, pp. 71–90] support this explanation. The Monte Carlo evidence, together with a large‐sample approximation to the variance of the combining weight, also supports the popular recommendation to ignore forecast error covariances in estimating the weight.
ISSN:0305-9049
1468-0084
DOI:10.1111/j.1468-0084.2008.00541.x