Parameter estimation and bias correction for diffusion processes

This paper considers parameter estimation for continuous-time diffusion processes which are commonly used to model dynamics of financial securities including interest rates. To understand why the drift parameters are more difficult to estimate than the diffusion parameter, as observed in previous st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2009-04, Vol.149 (1), p.65-81
Hauptverfasser: Tang, Cheng Yong, Chen, Song Xi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers parameter estimation for continuous-time diffusion processes which are commonly used to model dynamics of financial securities including interest rates. To understand why the drift parameters are more difficult to estimate than the diffusion parameter, as observed in previous studies, we first develop expansions for the bias and variance of parameter estimators for two of the most employed interest rate processes, Vasicek and CIR processes. Then, we study the first order approximate maximum likelihood estimator for linear drift processes. A parametric bootstrap procedure is proposed to correct bias for general diffusion processes with a theoretical justification. Simulation studies confirm the theoretical findings and show that the bootstrap proposal can effectively reduce both the bias and the mean square error of parameter estimates, for both univariate and multivariate processes. The advantages of using more accurate parameter estimators when calculating various option prices in finance are demonstrated by an empirical study.
ISSN:0304-4076
1872-6895
DOI:10.1016/j.jeconom.2008.11.001