Efficient estimation of auto-regression parameters and innovation distributions for semiparametric integer-valued AR(p) models
Integer-valued auto-regressive (INAR) processes have been introduced to model non-negative integer-valued phenomena that evolve over time. The distribution of an INAR(p) process is essentially described by two parameters: a vector of auto-regression coefficients and a probability distribution on the...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2009-04, Vol.71 (2), p.467-485 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Integer-valued auto-regressive (INAR) processes have been introduced to model non-negative integer-valued phenomena that evolve over time. The distribution of an INAR(p) process is essentially described by two parameters: a vector of auto-regression coefficients and a probability distribution on the non-negative integers, called an immigration or innovation distribution. Traditionally, parametric models are considered where the innovation distribution is assumed to belong to a parametric family. The paper instead considers a more realistic semiparametric INAR(p) model where there are essentially no restrictions on the innovation distribution. We provide an (semiparametrically) efficient estimator of both the auto-regression parameters and the innovation distribution. |
---|---|
ISSN: | 1369-7412 1467-9868 |
DOI: | 10.1111/j.1467-9868.2008.00687.x |