SOLVABLE AFFINE TERM STRUCTURE MODELS

An Affine Term Structure Model (ATSM) is said to be solvable if the pricing problem has an explicit solution, i.e., the corresponding Riccati ordinary differential equations have a regular globally integrable flow. We identify the parametric restrictions which are necessary and sufficient for an ATS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical finance 2008-01, Vol.18 (1), p.135-153
Hauptverfasser: Grasselli, Martino, Tebaldi, Claudio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An Affine Term Structure Model (ATSM) is said to be solvable if the pricing problem has an explicit solution, i.e., the corresponding Riccati ordinary differential equations have a regular globally integrable flow. We identify the parametric restrictions which are necessary and sufficient for an ATSM with continuous paths, to be solvable in a state space , where , the domain of positive factors, has the geometry of a symmetric cone. This class of state spaces includes as special cases those introduced by Duffie and Kan (1996), and Wishart term structure processes discussed by Gourieroux and Sufana (2003). For all solvable models we provide the procedure to find the explicit solution of the Riccati ODE.
ISSN:0960-1627
1467-9965
DOI:10.1111/j.1467-9965.2007.00325.x