Bootstrap-based improvements for inference with clustered errors

Researchers have increasingly realized the need to account for within-group dependence in estimating standard errors of regression parameter estimates. The usual solution is to calculate cluster-robust standard errors that permit heteroskedasticity and within-cluster error correlation, but presume t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The review of economics and statistics 2008-08, Vol.XC (3), p.414-427
Hauptverfasser: Cameron, A Colin, Gelbach, Jonah B, Miller, Douglas L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Researchers have increasingly realized the need to account for within-group dependence in estimating standard errors of regression parameter estimates. The usual solution is to calculate cluster-robust standard errors that permit heteroskedasticity and within-cluster error correlation, but presume that the number of clusters is large. Standard asymptotic tests can over-reject, however, with few (five to thirty) clusters. We investigate inference using cluster bootstrap-t procedures that provide asymptotic refinement. These procedures are evaluated using Monte Carlos, including the example of Bertrand, Duflo, and Mullainathan (2004). Rejection rates of 10% using standard methods can be reduced to the nominal size of 5% using our methods. Reprinted by permission of the MIT Press
ISSN:0034-6535