A Monte Carlo comparison of semiparametric Tobit estimators

This paper focuses on a performance comparison of semiparametric Tobit estimators. Firstly, a conditional expectation version of Horowitz's distribution-free least-squares estimator is proposed, together with a short description of the other estimators considered in the later Monte Carlo experi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied econometrics (Chichester, England) England), 1989-10, Vol.4 (4), p.361-382
1. Verfasser: Moon, Choon-Geol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper focuses on a performance comparison of semiparametric Tobit estimators. Firstly, a conditional expectation version of Horowitz's distribution-free least-squares estimator is proposed, together with a short description of the other estimators considered in the later Monte Carlo experiment. Then, a performance comparison of the following selected estimators is made through a Monte Carlo experiment: the standard Tobit maximum-likelihood estimator, the Buckley-James estimator, Horowitz's distribution-free least-squares estimator, a conditional version of Horowitz's estimator and Powell's least absolute deviations estimator. An empirical example of Engel curve estimation with zero expenditures follows.
ISSN:0883-7252
1099-1255
DOI:10.1002/jae.3950040405