A stochastic variance factor model for large datasets and an application to S&P data

The aim of this paper is to consider multivariate stochastic volatility models for large dimensional datasets. We suggest the use of the principal component methodology of Stock and Watson [Stock, J.H., Watson, M.W., 2002. Macroeconomic forecasting using diffusion indices. Journal of Business and Ec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Economics letters 2008-07, Vol.100 (1), p.130-134
Hauptverfasser: Cipollini, A., Kapetanios, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this paper is to consider multivariate stochastic volatility models for large dimensional datasets. We suggest the use of the principal component methodology of Stock and Watson [Stock, J.H., Watson, M.W., 2002. Macroeconomic forecasting using diffusion indices. Journal of Business and Economic Statistics, 20, 147–162] for the stochastic volatility factor model discussed by Harvey, Ruiz, and Shephard [Harvey, A.C., Ruiz, E., Shephard, N., 1994. Multivariate Stochastic Variance Models. Review of Economic Studies, 61, 247–264]. We provide theoretical and Monte Carlo results on this method and apply it to S&P data.
ISSN:0165-1765
1873-7374
DOI:10.1016/j.econlet.2007.12.014