Weak identification robust tests in an instrumental quantile model

We develop a testing procedure that is robust to identification quality in an instrumental quantile model. In order to reduce the computational burden, a multi-step approach is taken, and a two-step Anderson–Rubin (AR) statistic is considered. We then propose an orthogonal decomposition of the AR st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2008-05, Vol.144 (1), p.118-138
1. Verfasser: Jun, Sung Jae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 138
container_issue 1
container_start_page 118
container_title Journal of econometrics
container_volume 144
creator Jun, Sung Jae
description We develop a testing procedure that is robust to identification quality in an instrumental quantile model. In order to reduce the computational burden, a multi-step approach is taken, and a two-step Anderson–Rubin (AR) statistic is considered. We then propose an orthogonal decomposition of the AR statistic, where the null distribution of each component does not depend on the assumption of a full rank of the Jacobian. Power experiments are conducted, and inferences on returns to schooling using the Angrist and Krueger data are considered as an empirical example.
doi_str_mv 10.1016/j.jeconom.2007.12.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36885334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407607002576</els_id><sourcerecordid>1474411511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-a2a3b06f24225803538e5577193086ff092df1d190f33d90d753da02c8c7d08a3</originalsourceid><addsrcrecordid>eNqFkFGL1TAQhYsoeF39CUIR9K11kjRN-iS6qLu44IviY8gmE0xtm7tJu7D_3rn0sg--GJgZCN85HE5VvWbQMmD9-7Ed0aUlzS0HUC3jLUD_pDowrXjT60E-rQ4goGs6UP3z6kUpIwDITotD9ekX2j919LisMURn15iWOqfbraz1imUtdVxqu9Aua95mwuxU322W8AnrOXmcXlbPgp0Kvjrfi-rnl88_Lq-am-9fry8_3jROcrU2lltxC33gHedSg5BCo5RKsUGA7kOAgfvAPBsgCOEH8EoKb4E77ZQHbcVF9W73PeZ0t1E2M8ficJrsgmkrRvRaSyE6At_8A45pywtlM2zoe6G0YgTJHXI5lZIxmGOOs80PhoE51WpGc67VnGo1jBuqlXTfdl3GI7pHEdLb4XsjLOs62g80JNV04umT5ni6TBsmtPm9zuT29hzVFmenkO3iYnl05VTTIAQn7sPOIRV8HzGb4iIuDn3M6FbjU_xP7r-GT6hu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196637871</pqid></control><display><type>article</type><title>Weak identification robust tests in an instrumental quantile model</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Jun, Sung Jae</creator><creatorcontrib>Jun, Sung Jae</creatorcontrib><description>We develop a testing procedure that is robust to identification quality in an instrumental quantile model. In order to reduce the computational burden, a multi-step approach is taken, and a two-step Anderson–Rubin (AR) statistic is considered. We then propose an orthogonal decomposition of the AR statistic, where the null distribution of each component does not depend on the assumption of a full rank of the Jacobian. Power experiments are conducted, and inferences on returns to schooling using the Angrist and Krueger data are considered as an empirical example.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2007.12.006</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applications ; Distribution theory ; Econometric models ; Economic models ; Exact sciences and technology ; Generalized method of moments ; GMM ; Instruments ; Insurance, economics, finance ; Mathematics ; Matrix ; Probability and statistics ; Probability theory and stochastic processes ; Quantile regression ; Regression analysis ; Sciences and techniques of general use ; Statistical methods ; Statistics ; Studies ; Weak identification</subject><ispartof>Journal of econometrics, 2008-05, Vol.144 (1), p.118-138</ispartof><rights>2008 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. May 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-a2a3b06f24225803538e5577193086ff092df1d190f33d90d753da02c8c7d08a3</citedby><cites>FETCH-LOGICAL-c527t-a2a3b06f24225803538e5577193086ff092df1d190f33d90d753da02c8c7d08a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304407607002576$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,3994,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20359332$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeeconom/v_3a144_3ay_3a2008_3ai_3a1_3ap_3a118-138.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Jun, Sung Jae</creatorcontrib><title>Weak identification robust tests in an instrumental quantile model</title><title>Journal of econometrics</title><description>We develop a testing procedure that is robust to identification quality in an instrumental quantile model. In order to reduce the computational burden, a multi-step approach is taken, and a two-step Anderson–Rubin (AR) statistic is considered. We then propose an orthogonal decomposition of the AR statistic, where the null distribution of each component does not depend on the assumption of a full rank of the Jacobian. Power experiments are conducted, and inferences on returns to schooling using the Angrist and Krueger data are considered as an empirical example.</description><subject>Applications</subject><subject>Distribution theory</subject><subject>Econometric models</subject><subject>Economic models</subject><subject>Exact sciences and technology</subject><subject>Generalized method of moments</subject><subject>GMM</subject><subject>Instruments</subject><subject>Insurance, economics, finance</subject><subject>Mathematics</subject><subject>Matrix</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Quantile regression</subject><subject>Regression analysis</subject><subject>Sciences and techniques of general use</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Studies</subject><subject>Weak identification</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkFGL1TAQhYsoeF39CUIR9K11kjRN-iS6qLu44IviY8gmE0xtm7tJu7D_3rn0sg--GJgZCN85HE5VvWbQMmD9-7Ed0aUlzS0HUC3jLUD_pDowrXjT60E-rQ4goGs6UP3z6kUpIwDITotD9ekX2j919LisMURn15iWOqfbraz1imUtdVxqu9Aua95mwuxU322W8AnrOXmcXlbPgp0Kvjrfi-rnl88_Lq-am-9fry8_3jROcrU2lltxC33gHedSg5BCo5RKsUGA7kOAgfvAPBsgCOEH8EoKb4E77ZQHbcVF9W73PeZ0t1E2M8ficJrsgmkrRvRaSyE6At_8A45pywtlM2zoe6G0YgTJHXI5lZIxmGOOs80PhoE51WpGc67VnGo1jBuqlXTfdl3GI7pHEdLb4XsjLOs62g80JNV04umT5ni6TBsmtPm9zuT29hzVFmenkO3iYnl05VTTIAQn7sPOIRV8HzGb4iIuDn3M6FbjU_xP7r-GT6hu</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Jun, Sung Jae</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20080501</creationdate><title>Weak identification robust tests in an instrumental quantile model</title><author>Jun, Sung Jae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-a2a3b06f24225803538e5577193086ff092df1d190f33d90d753da02c8c7d08a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applications</topic><topic>Distribution theory</topic><topic>Econometric models</topic><topic>Economic models</topic><topic>Exact sciences and technology</topic><topic>Generalized method of moments</topic><topic>GMM</topic><topic>Instruments</topic><topic>Insurance, economics, finance</topic><topic>Mathematics</topic><topic>Matrix</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Quantile regression</topic><topic>Regression analysis</topic><topic>Sciences and techniques of general use</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Studies</topic><topic>Weak identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jun, Sung Jae</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jun, Sung Jae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak identification robust tests in an instrumental quantile model</atitle><jtitle>Journal of econometrics</jtitle><date>2008-05-01</date><risdate>2008</risdate><volume>144</volume><issue>1</issue><spage>118</spage><epage>138</epage><pages>118-138</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><coden>JECMB6</coden><abstract>We develop a testing procedure that is robust to identification quality in an instrumental quantile model. In order to reduce the computational burden, a multi-step approach is taken, and a two-step Anderson–Rubin (AR) statistic is considered. We then propose an orthogonal decomposition of the AR statistic, where the null distribution of each component does not depend on the assumption of a full rank of the Jacobian. Power experiments are conducted, and inferences on returns to schooling using the Angrist and Krueger data are considered as an empirical example.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2007.12.006</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2008-05, Vol.144 (1), p.118-138
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_miscellaneous_36885334
source RePEc; Elsevier ScienceDirect Journals
subjects Applications
Distribution theory
Econometric models
Economic models
Exact sciences and technology
Generalized method of moments
GMM
Instruments
Insurance, economics, finance
Mathematics
Matrix
Probability and statistics
Probability theory and stochastic processes
Quantile regression
Regression analysis
Sciences and techniques of general use
Statistical methods
Statistics
Studies
Weak identification
title Weak identification robust tests in an instrumental quantile model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T06%3A47%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20identification%20robust%20tests%20in%20an%20instrumental%20quantile%20model&rft.jtitle=Journal%20of%20econometrics&rft.au=Jun,%20Sung%20Jae&rft.date=2008-05-01&rft.volume=144&rft.issue=1&rft.spage=118&rft.epage=138&rft.pages=118-138&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/j.jeconom.2007.12.006&rft_dat=%3Cproquest_cross%3E1474411511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196637871&rft_id=info:pmid/&rft_els_id=S0304407607002576&rfr_iscdi=true