Weak identification robust tests in an instrumental quantile model

We develop a testing procedure that is robust to identification quality in an instrumental quantile model. In order to reduce the computational burden, a multi-step approach is taken, and a two-step Anderson–Rubin (AR) statistic is considered. We then propose an orthogonal decomposition of the AR st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2008-05, Vol.144 (1), p.118-138
1. Verfasser: Jun, Sung Jae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a testing procedure that is robust to identification quality in an instrumental quantile model. In order to reduce the computational burden, a multi-step approach is taken, and a two-step Anderson–Rubin (AR) statistic is considered. We then propose an orthogonal decomposition of the AR statistic, where the null distribution of each component does not depend on the assumption of a full rank of the Jacobian. Power experiments are conducted, and inferences on returns to schooling using the Angrist and Krueger data are considered as an empirical example.
ISSN:0304-4076
1872-6895
DOI:10.1016/j.jeconom.2007.12.006