Non-parametric small area estimation using penalized spline regression

The paper proposes a small area estimation approach that combines small area random effects with a smooth, non-parametrically specified trend. By using penalized splines as the representation for the non-parametric trend, it is possible to express the non-parametric small area estimation problem as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2008-02, Vol.70 (1), p.265-286
Hauptverfasser: Opsomer, J. D., Claeskens, G., Ranalli, M. G., Kauermann, G., Breidt, F. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 286
container_issue 1
container_start_page 265
container_title Journal of the Royal Statistical Society. Series B, Statistical methodology
container_volume 70
creator Opsomer, J. D.
Claeskens, G.
Ranalli, M. G.
Kauermann, G.
Breidt, F. J.
description The paper proposes a small area estimation approach that combines small area random effects with a smooth, non-parametrically specified trend. By using penalized splines as the representation for the non-parametric trend, it is possible to express the non-parametric small area estimation problem as a mixed effect model regression. The resulting model is readily fitted by using existing model fitting approaches such as restricted maximum likelihood. We present theoretical results on the prediction mean-squared error of the estimator proposed and on likelihood ratio tests for random effects, and we propose a simple non-parametric bootstrap approach for model inference and estimation of the small area prediction mean-squared error. The applicability of the method is demonstrated on a survey of lakes in north-eastern USA.
doi_str_mv 10.1111/j.1467-9868.2007.00635.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_36839293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20203822</jstor_id><sourcerecordid>20203822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6445-8eec8f4d16e7508df7a01a7f4b65ad0076a47380ca762d802bdcb47e6690c65d3</originalsourceid><addsrcrecordid>eNqNUl2L1TAQLaLguvoThCLoW2s-2iR98EEv7up1WWHXr7chTdM1Nf0w6dV7_fVO7XIRnxyYzJA5Zzg5JElSSnKK8bzLaSFkVimhckaIzAkRvMz3d5KT4-Au9lxUmSwou588iLEjGELyk-TschyySQfd2zk4k8Zee5_qYHVq4-x6PbtxSHfRDTfpZAft3S_bpHHybrBpsDfBxoiIh8m9VvtoH93W0-Tj2esPmzfZxfvzt5uXF5kRRVFmylqj2qKhwsqSqKaVmlAt26IWpW5QvdCF5IoYLQVrFGF1Y-pCWiEqYkTZ8NPk2bp3CuP3HSqE3kVjvdeDHXcRuFC8YhVH4JN_gN24C6g_ArpUlZWQFEFqBZkwxhhsC1PAJ4cDUAKLu9DBYiIsJi48CX_chT1Stys12MmaI6_2uhtDjDX8AK4lweOAiVSFxWFSzGm5EiUwJeDr3OOyp7didTTat0EPxsXjUmQzSsmi98WK--m8Pfy3WLi6vn6FHfIfr_wuzmP4az8jXDGG82yduzjb_XGuwzfAzyJL-Hx5Dtvtp5Jebd7BF_4bm3K_Mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200959671</pqid></control><display><type>article</type><title>Non-parametric small area estimation using penalized spline regression</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>RePEc</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Opsomer, J. D. ; Claeskens, G. ; Ranalli, M. G. ; Kauermann, G. ; Breidt, F. J.</creator><creatorcontrib>Opsomer, J. D. ; Claeskens, G. ; Ranalli, M. G. ; Kauermann, G. ; Breidt, F. J.</creatorcontrib><description>The paper proposes a small area estimation approach that combines small area random effects with a smooth, non-parametrically specified trend. By using penalized splines as the representation for the non-parametric trend, it is possible to express the non-parametric small area estimation problem as a mixed effect model regression. The resulting model is readily fitted by using existing model fitting approaches such as restricted maximum likelihood. We present theoretical results on the prediction mean-squared error of the estimator proposed and on likelihood ratio tests for random effects, and we propose a simple non-parametric bootstrap approach for model inference and estimation of the small area prediction mean-squared error. The applicability of the method is demonstrated on a survey of lakes in north-eastern USA.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/j.1467-9868.2007.00635.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Approximation ; Approximations and expansions ; Best linear unbiased prediction ; Bootstrap inference ; Bootstrap mechanism ; Bootstrap method ; Estimation ; Estimation methods ; Estimators ; Exact sciences and technology ; General topics ; Geographical information systems ; Lakes ; Mathematical analysis ; Mathematics ; Maximum likelihood estimation ; Maximum likelihood method ; Mixed model ; Modeling ; Natural resource survey ; Natural resources ; Nonparametric models ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation ; Parametric inference ; Parametric models ; Probability and statistics ; Ratio test ; Sciences and techniques of general use ; Spatial analysis ; Spatial models ; Statistical methods ; Statistical variance ; Statistics ; Studies ; U.S.A</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2008-02, Vol.70 (1), p.265-286</ispartof><rights>Copyright 2008 The Royal Statistical Society and Blackwell Publishing Ltd.</rights><rights>2008 INIST-CNRS</rights><rights>2008 Royal Statistical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6445-8eec8f4d16e7508df7a01a7f4b65ad0076a47380ca762d802bdcb47e6690c65d3</citedby><cites>FETCH-LOGICAL-c6445-8eec8f4d16e7508df7a01a7f4b65ad0076a47380ca762d802bdcb47e6690c65d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20203822$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20203822$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,3994,27901,27902,45550,45551,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20021101$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/blajorssb/v_3a70_3ay_3a2008_3ai_3a1_3ap_3a265-286.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Opsomer, J. D.</creatorcontrib><creatorcontrib>Claeskens, G.</creatorcontrib><creatorcontrib>Ranalli, M. G.</creatorcontrib><creatorcontrib>Kauermann, G.</creatorcontrib><creatorcontrib>Breidt, F. J.</creatorcontrib><title>Non-parametric small area estimation using penalized spline regression</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><description>The paper proposes a small area estimation approach that combines small area random effects with a smooth, non-parametrically specified trend. By using penalized splines as the representation for the non-parametric trend, it is possible to express the non-parametric small area estimation problem as a mixed effect model regression. The resulting model is readily fitted by using existing model fitting approaches such as restricted maximum likelihood. We present theoretical results on the prediction mean-squared error of the estimator proposed and on likelihood ratio tests for random effects, and we propose a simple non-parametric bootstrap approach for model inference and estimation of the small area prediction mean-squared error. The applicability of the method is demonstrated on a survey of lakes in north-eastern USA.</description><subject>Approximation</subject><subject>Approximations and expansions</subject><subject>Best linear unbiased prediction</subject><subject>Bootstrap inference</subject><subject>Bootstrap mechanism</subject><subject>Bootstrap method</subject><subject>Estimation</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Geographical information systems</subject><subject>Lakes</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood method</subject><subject>Mixed model</subject><subject>Modeling</subject><subject>Natural resource survey</subject><subject>Natural resources</subject><subject>Nonparametric models</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation</subject><subject>Parametric inference</subject><subject>Parametric models</subject><subject>Probability and statistics</subject><subject>Ratio test</subject><subject>Sciences and techniques of general use</subject><subject>Spatial analysis</subject><subject>Spatial models</subject><subject>Statistical methods</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Studies</subject><subject>U.S.A</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqNUl2L1TAQLaLguvoThCLoW2s-2iR98EEv7up1WWHXr7chTdM1Nf0w6dV7_fVO7XIRnxyYzJA5Zzg5JElSSnKK8bzLaSFkVimhckaIzAkRvMz3d5KT4-Au9lxUmSwou588iLEjGELyk-TschyySQfd2zk4k8Zee5_qYHVq4-x6PbtxSHfRDTfpZAft3S_bpHHybrBpsDfBxoiIh8m9VvtoH93W0-Tj2esPmzfZxfvzt5uXF5kRRVFmylqj2qKhwsqSqKaVmlAt26IWpW5QvdCF5IoYLQVrFGF1Y-pCWiEqYkTZ8NPk2bp3CuP3HSqE3kVjvdeDHXcRuFC8YhVH4JN_gN24C6g_ArpUlZWQFEFqBZkwxhhsC1PAJ4cDUAKLu9DBYiIsJi48CX_chT1Stys12MmaI6_2uhtDjDX8AK4lweOAiVSFxWFSzGm5EiUwJeDr3OOyp7didTTat0EPxsXjUmQzSsmi98WK--m8Pfy3WLi6vn6FHfIfr_wuzmP4az8jXDGG82yduzjb_XGuwzfAzyJL-Hx5Dtvtp5Jebd7BF_4bm3K_Mw</recordid><startdate>200802</startdate><enddate>200802</enddate><creator>Opsomer, J. D.</creator><creator>Claeskens, G.</creator><creator>Ranalli, M. G.</creator><creator>Kauermann, G.</creator><creator>Breidt, F. J.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Publishing</general><general>Blackwell</general><general>Royal Statistical Society</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200802</creationdate><title>Non-parametric small area estimation using penalized spline regression</title><author>Opsomer, J. D. ; Claeskens, G. ; Ranalli, M. G. ; Kauermann, G. ; Breidt, F. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6445-8eec8f4d16e7508df7a01a7f4b65ad0076a47380ca762d802bdcb47e6690c65d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Approximation</topic><topic>Approximations and expansions</topic><topic>Best linear unbiased prediction</topic><topic>Bootstrap inference</topic><topic>Bootstrap mechanism</topic><topic>Bootstrap method</topic><topic>Estimation</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Geographical information systems</topic><topic>Lakes</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood method</topic><topic>Mixed model</topic><topic>Modeling</topic><topic>Natural resource survey</topic><topic>Natural resources</topic><topic>Nonparametric models</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation</topic><topic>Parametric inference</topic><topic>Parametric models</topic><topic>Probability and statistics</topic><topic>Ratio test</topic><topic>Sciences and techniques of general use</topic><topic>Spatial analysis</topic><topic>Spatial models</topic><topic>Statistical methods</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Studies</topic><topic>U.S.A</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Opsomer, J. D.</creatorcontrib><creatorcontrib>Claeskens, G.</creatorcontrib><creatorcontrib>Ranalli, M. G.</creatorcontrib><creatorcontrib>Kauermann, G.</creatorcontrib><creatorcontrib>Breidt, F. J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Opsomer, J. D.</au><au>Claeskens, G.</au><au>Ranalli, M. G.</au><au>Kauermann, G.</au><au>Breidt, F. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-parametric small area estimation using penalized spline regression</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><date>2008-02</date><risdate>2008</risdate><volume>70</volume><issue>1</issue><spage>265</spage><epage>286</epage><pages>265-286</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>The paper proposes a small area estimation approach that combines small area random effects with a smooth, non-parametrically specified trend. By using penalized splines as the representation for the non-parametric trend, it is possible to express the non-parametric small area estimation problem as a mixed effect model regression. The resulting model is readily fitted by using existing model fitting approaches such as restricted maximum likelihood. We present theoretical results on the prediction mean-squared error of the estimator proposed and on likelihood ratio tests for random effects, and we propose a simple non-parametric bootstrap approach for model inference and estimation of the small area prediction mean-squared error. The applicability of the method is demonstrated on a survey of lakes in north-eastern USA.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-9868.2007.00635.x</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1369-7412
ispartof Journal of the Royal Statistical Society. Series B, Statistical methodology, 2008-02, Vol.70 (1), p.265-286
issn 1369-7412
1467-9868
language eng
recordid cdi_proquest_miscellaneous_36839293
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); RePEc; Wiley Online Library Journals Frontfile Complete; Business Source Complete; JSTOR Mathematics & Statistics
subjects Approximation
Approximations and expansions
Best linear unbiased prediction
Bootstrap inference
Bootstrap mechanism
Bootstrap method
Estimation
Estimation methods
Estimators
Exact sciences and technology
General topics
Geographical information systems
Lakes
Mathematical analysis
Mathematics
Maximum likelihood estimation
Maximum likelihood method
Mixed model
Modeling
Natural resource survey
Natural resources
Nonparametric models
Numerical analysis
Numerical analysis. Scientific computation
Numerical approximation
Parametric inference
Parametric models
Probability and statistics
Ratio test
Sciences and techniques of general use
Spatial analysis
Spatial models
Statistical methods
Statistical variance
Statistics
Studies
U.S.A
title Non-parametric small area estimation using penalized spline regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T06%3A47%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-parametric%20small%20area%20estimation%20using%20penalized%20spline%20regression&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Opsomer,%20J.%20D.&rft.date=2008-02&rft.volume=70&rft.issue=1&rft.spage=265&rft.epage=286&rft.pages=265-286&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/j.1467-9868.2007.00635.x&rft_dat=%3Cjstor_proqu%3E20203822%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200959671&rft_id=info:pmid/&rft_jstor_id=20203822&rfr_iscdi=true