Non-parametric small area estimation using penalized spline regression
The paper proposes a small area estimation approach that combines small area random effects with a smooth, non-parametrically specified trend. By using penalized splines as the representation for the non-parametric trend, it is possible to express the non-parametric small area estimation problem as...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2008-02, Vol.70 (1), p.265-286 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 286 |
---|---|
container_issue | 1 |
container_start_page | 265 |
container_title | Journal of the Royal Statistical Society. Series B, Statistical methodology |
container_volume | 70 |
creator | Opsomer, J. D. Claeskens, G. Ranalli, M. G. Kauermann, G. Breidt, F. J. |
description | The paper proposes a small area estimation approach that combines small area random effects with a smooth, non-parametrically specified trend. By using penalized splines as the representation for the non-parametric trend, it is possible to express the non-parametric small area estimation problem as a mixed effect model regression. The resulting model is readily fitted by using existing model fitting approaches such as restricted maximum likelihood. We present theoretical results on the prediction mean-squared error of the estimator proposed and on likelihood ratio tests for random effects, and we propose a simple non-parametric bootstrap approach for model inference and estimation of the small area prediction mean-squared error. The applicability of the method is demonstrated on a survey of lakes in north-eastern USA. |
doi_str_mv | 10.1111/j.1467-9868.2007.00635.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_36839293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20203822</jstor_id><sourcerecordid>20203822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6445-8eec8f4d16e7508df7a01a7f4b65ad0076a47380ca762d802bdcb47e6690c65d3</originalsourceid><addsrcrecordid>eNqNUl2L1TAQLaLguvoThCLoW2s-2iR98EEv7up1WWHXr7chTdM1Nf0w6dV7_fVO7XIRnxyYzJA5Zzg5JElSSnKK8bzLaSFkVimhckaIzAkRvMz3d5KT4-Au9lxUmSwou588iLEjGELyk-TschyySQfd2zk4k8Zee5_qYHVq4-x6PbtxSHfRDTfpZAft3S_bpHHybrBpsDfBxoiIh8m9VvtoH93W0-Tj2esPmzfZxfvzt5uXF5kRRVFmylqj2qKhwsqSqKaVmlAt26IWpW5QvdCF5IoYLQVrFGF1Y-pCWiEqYkTZ8NPk2bp3CuP3HSqE3kVjvdeDHXcRuFC8YhVH4JN_gN24C6g_ArpUlZWQFEFqBZkwxhhsC1PAJ4cDUAKLu9DBYiIsJi48CX_chT1Stys12MmaI6_2uhtDjDX8AK4lweOAiVSFxWFSzGm5EiUwJeDr3OOyp7didTTat0EPxsXjUmQzSsmi98WK--m8Pfy3WLi6vn6FHfIfr_wuzmP4az8jXDGG82yduzjb_XGuwzfAzyJL-Hx5Dtvtp5Jebd7BF_4bm3K_Mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200959671</pqid></control><display><type>article</type><title>Non-parametric small area estimation using penalized spline regression</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>RePEc</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><source>JSTOR Mathematics & Statistics</source><creator>Opsomer, J. D. ; Claeskens, G. ; Ranalli, M. G. ; Kauermann, G. ; Breidt, F. J.</creator><creatorcontrib>Opsomer, J. D. ; Claeskens, G. ; Ranalli, M. G. ; Kauermann, G. ; Breidt, F. J.</creatorcontrib><description>The paper proposes a small area estimation approach that combines small area random effects with a smooth, non-parametrically specified trend. By using penalized splines as the representation for the non-parametric trend, it is possible to express the non-parametric small area estimation problem as a mixed effect model regression. The resulting model is readily fitted by using existing model fitting approaches such as restricted maximum likelihood. We present theoretical results on the prediction mean-squared error of the estimator proposed and on likelihood ratio tests for random effects, and we propose a simple non-parametric bootstrap approach for model inference and estimation of the small area prediction mean-squared error. The applicability of the method is demonstrated on a survey of lakes in north-eastern USA.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/j.1467-9868.2007.00635.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Approximation ; Approximations and expansions ; Best linear unbiased prediction ; Bootstrap inference ; Bootstrap mechanism ; Bootstrap method ; Estimation ; Estimation methods ; Estimators ; Exact sciences and technology ; General topics ; Geographical information systems ; Lakes ; Mathematical analysis ; Mathematics ; Maximum likelihood estimation ; Maximum likelihood method ; Mixed model ; Modeling ; Natural resource survey ; Natural resources ; Nonparametric models ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation ; Parametric inference ; Parametric models ; Probability and statistics ; Ratio test ; Sciences and techniques of general use ; Spatial analysis ; Spatial models ; Statistical methods ; Statistical variance ; Statistics ; Studies ; U.S.A</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2008-02, Vol.70 (1), p.265-286</ispartof><rights>Copyright 2008 The Royal Statistical Society and Blackwell Publishing Ltd.</rights><rights>2008 INIST-CNRS</rights><rights>2008 Royal Statistical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6445-8eec8f4d16e7508df7a01a7f4b65ad0076a47380ca762d802bdcb47e6690c65d3</citedby><cites>FETCH-LOGICAL-c6445-8eec8f4d16e7508df7a01a7f4b65ad0076a47380ca762d802bdcb47e6690c65d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20203822$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20203822$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,3994,27901,27902,45550,45551,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20021101$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/blajorssb/v_3a70_3ay_3a2008_3ai_3a1_3ap_3a265-286.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Opsomer, J. D.</creatorcontrib><creatorcontrib>Claeskens, G.</creatorcontrib><creatorcontrib>Ranalli, M. G.</creatorcontrib><creatorcontrib>Kauermann, G.</creatorcontrib><creatorcontrib>Breidt, F. J.</creatorcontrib><title>Non-parametric small area estimation using penalized spline regression</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><description>The paper proposes a small area estimation approach that combines small area random effects with a smooth, non-parametrically specified trend. By using penalized splines as the representation for the non-parametric trend, it is possible to express the non-parametric small area estimation problem as a mixed effect model regression. The resulting model is readily fitted by using existing model fitting approaches such as restricted maximum likelihood. We present theoretical results on the prediction mean-squared error of the estimator proposed and on likelihood ratio tests for random effects, and we propose a simple non-parametric bootstrap approach for model inference and estimation of the small area prediction mean-squared error. The applicability of the method is demonstrated on a survey of lakes in north-eastern USA.</description><subject>Approximation</subject><subject>Approximations and expansions</subject><subject>Best linear unbiased prediction</subject><subject>Bootstrap inference</subject><subject>Bootstrap mechanism</subject><subject>Bootstrap method</subject><subject>Estimation</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Geographical information systems</subject><subject>Lakes</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood method</subject><subject>Mixed model</subject><subject>Modeling</subject><subject>Natural resource survey</subject><subject>Natural resources</subject><subject>Nonparametric models</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation</subject><subject>Parametric inference</subject><subject>Parametric models</subject><subject>Probability and statistics</subject><subject>Ratio test</subject><subject>Sciences and techniques of general use</subject><subject>Spatial analysis</subject><subject>Spatial models</subject><subject>Statistical methods</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Studies</subject><subject>U.S.A</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqNUl2L1TAQLaLguvoThCLoW2s-2iR98EEv7up1WWHXr7chTdM1Nf0w6dV7_fVO7XIRnxyYzJA5Zzg5JElSSnKK8bzLaSFkVimhckaIzAkRvMz3d5KT4-Au9lxUmSwou588iLEjGELyk-TschyySQfd2zk4k8Zee5_qYHVq4-x6PbtxSHfRDTfpZAft3S_bpHHybrBpsDfBxoiIh8m9VvtoH93W0-Tj2esPmzfZxfvzt5uXF5kRRVFmylqj2qKhwsqSqKaVmlAt26IWpW5QvdCF5IoYLQVrFGF1Y-pCWiEqYkTZ8NPk2bp3CuP3HSqE3kVjvdeDHXcRuFC8YhVH4JN_gN24C6g_ArpUlZWQFEFqBZkwxhhsC1PAJ4cDUAKLu9DBYiIsJi48CX_chT1Stys12MmaI6_2uhtDjDX8AK4lweOAiVSFxWFSzGm5EiUwJeDr3OOyp7didTTat0EPxsXjUmQzSsmi98WK--m8Pfy3WLi6vn6FHfIfr_wuzmP4az8jXDGG82yduzjb_XGuwzfAzyJL-Hx5Dtvtp5Jebd7BF_4bm3K_Mw</recordid><startdate>200802</startdate><enddate>200802</enddate><creator>Opsomer, J. D.</creator><creator>Claeskens, G.</creator><creator>Ranalli, M. G.</creator><creator>Kauermann, G.</creator><creator>Breidt, F. J.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Publishing</general><general>Blackwell</general><general>Royal Statistical Society</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200802</creationdate><title>Non-parametric small area estimation using penalized spline regression</title><author>Opsomer, J. D. ; Claeskens, G. ; Ranalli, M. G. ; Kauermann, G. ; Breidt, F. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6445-8eec8f4d16e7508df7a01a7f4b65ad0076a47380ca762d802bdcb47e6690c65d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Approximation</topic><topic>Approximations and expansions</topic><topic>Best linear unbiased prediction</topic><topic>Bootstrap inference</topic><topic>Bootstrap mechanism</topic><topic>Bootstrap method</topic><topic>Estimation</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Geographical information systems</topic><topic>Lakes</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood method</topic><topic>Mixed model</topic><topic>Modeling</topic><topic>Natural resource survey</topic><topic>Natural resources</topic><topic>Nonparametric models</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation</topic><topic>Parametric inference</topic><topic>Parametric models</topic><topic>Probability and statistics</topic><topic>Ratio test</topic><topic>Sciences and techniques of general use</topic><topic>Spatial analysis</topic><topic>Spatial models</topic><topic>Statistical methods</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Studies</topic><topic>U.S.A</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Opsomer, J. D.</creatorcontrib><creatorcontrib>Claeskens, G.</creatorcontrib><creatorcontrib>Ranalli, M. G.</creatorcontrib><creatorcontrib>Kauermann, G.</creatorcontrib><creatorcontrib>Breidt, F. J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Opsomer, J. D.</au><au>Claeskens, G.</au><au>Ranalli, M. G.</au><au>Kauermann, G.</au><au>Breidt, F. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-parametric small area estimation using penalized spline regression</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><date>2008-02</date><risdate>2008</risdate><volume>70</volume><issue>1</issue><spage>265</spage><epage>286</epage><pages>265-286</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>The paper proposes a small area estimation approach that combines small area random effects with a smooth, non-parametrically specified trend. By using penalized splines as the representation for the non-parametric trend, it is possible to express the non-parametric small area estimation problem as a mixed effect model regression. The resulting model is readily fitted by using existing model fitting approaches such as restricted maximum likelihood. We present theoretical results on the prediction mean-squared error of the estimator proposed and on likelihood ratio tests for random effects, and we propose a simple non-parametric bootstrap approach for model inference and estimation of the small area prediction mean-squared error. The applicability of the method is demonstrated on a survey of lakes in north-eastern USA.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-9868.2007.00635.x</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-7412 |
ispartof | Journal of the Royal Statistical Society. Series B, Statistical methodology, 2008-02, Vol.70 (1), p.265-286 |
issn | 1369-7412 1467-9868 |
language | eng |
recordid | cdi_proquest_miscellaneous_36839293 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); RePEc; Wiley Online Library Journals Frontfile Complete; Business Source Complete; JSTOR Mathematics & Statistics |
subjects | Approximation Approximations and expansions Best linear unbiased prediction Bootstrap inference Bootstrap mechanism Bootstrap method Estimation Estimation methods Estimators Exact sciences and technology General topics Geographical information systems Lakes Mathematical analysis Mathematics Maximum likelihood estimation Maximum likelihood method Mixed model Modeling Natural resource survey Natural resources Nonparametric models Numerical analysis Numerical analysis. Scientific computation Numerical approximation Parametric inference Parametric models Probability and statistics Ratio test Sciences and techniques of general use Spatial analysis Spatial models Statistical methods Statistical variance Statistics Studies U.S.A |
title | Non-parametric small area estimation using penalized spline regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T06%3A47%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-parametric%20small%20area%20estimation%20using%20penalized%20spline%20regression&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Opsomer,%20J.%20D.&rft.date=2008-02&rft.volume=70&rft.issue=1&rft.spage=265&rft.epage=286&rft.pages=265-286&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/j.1467-9868.2007.00635.x&rft_dat=%3Cjstor_proqu%3E20203822%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200959671&rft_id=info:pmid/&rft_jstor_id=20203822&rfr_iscdi=true |